Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Aging (Albany NY) ; 132021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833129

RESUMO

This study investigated the effects of transforming growth factor-ß1 (TGF-ß1) and cyclooxygenase-2 (COX-2) on bone morphogenetic protein 9 (BMP9) in mesenchymal stem cells (MSCs). We found that BMP9 increased mRNA levels of TGF-ß1 and COX-2 in C3H10T1/2 cells. BMP9-induced osteogenic markers were enhanced by TGF-ß1 and reduced by TGF-ßRI-specific inhibitor LY364947. BMP9 increased level of p-Smad2/3, which were either enhanced or reduced by COX-2 and its inhibitor NS398. BMP9-induced osteogenic markers were decreased by NS398 and it was partially reversed by TGF-ß1. COX-2 increased BMP9-induced osteogenic marker levels, which almost abolished by LY364947. BMP9-induced bone formation was enhanced by TGF-ß1 but reduced by silencing TGF-ß1 or COX-2. BMP9's osteogenic ability was inhibited by silencing COX-2 but partially reversed by TGF-ß1. TGF-ß1 and COX-2 enhanced activation of p38 signaling, which was induced by BMP9 and reduced by LY364947. The ability of TGF-ß1 to increase the BMP9-induced osteogenic markers was reduced by p38-specific inhibitor, while BMP9-induced TGF-ß1 expression was reduced by NS398, but enhanced by COX-2. Furthermore, CREB interacted with Smad1/5/8 to regulate TGF-ß1 expression in MSCs. These findings suggest that COX-2 overexpression leads to increase BMP9's osteogenic ability, resulting from TGF-ß1 upregulation which then activates p38 signaling in MSCs.

2.
Gut ; 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789966

RESUMO

OBJECTIVE: To characterise the oral microbiome, gut microbiome and serum lipid profiles in patients with active COVID-19 and recovered patients; evaluate the potential of the microbiome as a non-invasive biomarker for COVID-19; and explore correlations between the microbiome and lipid profile. DESIGN: We collected and sequenced 392 tongue-coating samples, 172 faecal samples and 155 serum samples from Central China and East China. We characterised microbiome and lipid molecules, constructed microbial classifiers in discovery cohort and verified their diagnostic potential in 74 confirmed patients (CPs) from East China and 37 suspected patients (SPs) with IgG positivity. RESULTS: Oral and faecal microbial diversity was significantly decreased in CPs versus healthy controls (HCs). Compared with HCs, butyric acid-producing bacteria were decreased and lipopolysaccharide-producing bacteria were increased in CPs in oral cavity. The classifiers based on 8 optimal oral microbial markers (7 faecal microbial markers) achieved good diagnostic efficiency in different cohorts. Importantly, diagnostic efficacy reached 87.24% in the cross-regional cohort. Moreover, the classifiers successfully diagnosed SPs with IgG antibody positivity as CPs, and diagnostic efficacy reached 92.11% (98.01% of faecal microbiome). Compared with CPs, 47 lipid molecules, including sphingomyelin (SM)(d40:4), SM(d38:5) and monoglyceride(33:5), were depleted, and 122 lipid molecules, including phosphatidylcholine(36:4p), phosphatidylethanolamine (PE)(16:0p/20:5) and diglyceride(20:1/18:2), were enriched in confirmed patients recovery. CONCLUSION: This study is the first to characterise the oral microbiome in COVID-19, and oral microbiomes and lipid alterations in recovered patients, to explore their correlations and to report the successful establishment and validation of a diagnostic model for COVID-19.

3.
Mol Plant ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33857689

RESUMO

The proteolytic degradation of the photodamaged D1 core subunit during photosystem (PS) II repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, while seedlings overexpressing CLH1 have enhanced light tolerance, compared to the wild type. CLH1 localizes in the developing chloroplasts of young leaves and associates with PSII-dismantling complexes, RCC1 and RC47, with preference for the latter upon high-light. Furthermore, degradation of damaged D1 protein is retarded in clh1-1/2-2 young leaves after 18-h high-light exposure, but rescued by addition of recombinant CLH1 in vitro. Moreover, overexpressing CLH1 in a variegated mutant (var2-2) lacking thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. These results establish CLH1 as a long-sought chlorophyll dephytylation enzyme involved in PSII repair, functioning in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.

4.
J Fungi (Basel) ; 7(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799506

RESUMO

Most species in the genus Amanita are ectomycorrhizal fungi comprising both edible and poisonous mushrooms. Some species produce potent cyclic peptide toxins, such as α-amanitin, which places them among the deadliest organisms known to mankind. These toxins and related cyclic peptides are encoded by genes of the "MSDIN" family (named after the first five amino acid residues of the precursor peptides), and it is largely unknown to what extent these genes are expressed in the basidiocarps. In the present study, Amanita rimosa and Amanita exitialis were sequenced through the PacBio and Illumina techniques. Together with our two previously sequenced genomes, Amanita subjunquillea and Amanita pallidorosea, in total, 46 previously unknown MSDIN genes were discovered. The expression of over 80% of the MSDIN genes was demonstrated in A. subjunquillea. Through a combination of genomics and mass spectrometry, 12 MSDIN genes were shown to produce novel cyclic peptides. To further confirm the results, three of the cyclic peptides were chemically synthesized. The tandem mass spectrometry (MS/MS) spectra of the natural and the synthetic peptides shared a majority of the fragment ions, demonstrating an identical structure between each peptide pair. Collectively, the results suggested that the genome-guided approach is reliable for identifying novel cyclic peptides in Amanita species and that there is a large peptide reservoir in these mushrooms.

6.
PLoS One ; 16(3): e0247074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647031

RESUMO

OBJECTIVE: To study the feasibility of use of radiomic features extracted from axillary lymph nodes for diagnosis of their metastatic status in patients with breast cancer. MATERIALS AND METHODS: A total of 176 axillary lymph nodes of patients with breast cancer, consisting of 87 metastatic axillary lymph nodes (ALNM) and 89 negative axillary lymph nodes proven by surgery, were retrospectively reviewed from the database of our cancer center. For each selected axillary lymph node, 106 radiomic features based on preoperative pharmacokinetic modeling dynamic contrast enhanced magnetic resonance imaging (PK-DCE-MRI) and 5 conventional image features were obtained. The least absolute shrinkage and selection operator (LASSO) regression was used to select useful radiomic features. Logistic regression was used to develop diagnostic models for ALNM. Delong test was used to compare the diagnostic performance of different models. RESULTS: The 106 radiomic features were reduced to 4 ALNM diagnosis-related features by LASSO. Four diagnostic models including conventional model, pharmacokinetic model, radiomic model, and a combined model (integrating the Rad-score in the radiomic model with the conventional image features) were developed and validated. Delong test showed that the combined model had the best diagnostic performance: area under the curve (AUC), 0.972 (95% CI [0.947-0.997]) in the training cohort and 0.979 (95% CI [0.952-1]) in the validation cohort. The diagnostic performance of the combined model and the radiomic model were better than that of pharmacokinetic model and conventional model (P<0.05). CONCLUSION: Radiomic features extracted from PK-DCE-MRI images of axillary lymph nodes showed promising application for diagnosis of ALNM in patients with breast cancer.

7.
J Cell Mol Med ; 25(7): 3548-3559, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33728802

RESUMO

Growth arrest-specific 5 (GAS5) is a kind of long non-coding RNAs (lncRNAs). Previous studies showed that down-regulation of LncRNA-GAS5 was involved in the development of systemic lupus erythematosus (SLE). However, the regulatory mechanism of down-expressed LncRNA-GAS5 in SLE remains obscure. In this study, we aimed to investigate the association of LncRNA-GAS5 polymorphism with SLE risk. And further explore how LncRNA-GAS5 is involved in the occurrence of SLE. Here, we evaluated the relationship between the risk for the development of SLE and the 5-base pair (AGGCA/-) insertion/deletion (I/D) polymorphism (rs145204276) in the LncRNA-GAS5 promoter region. A custom 36-Plex SNPscan kit was used for genotyping the LncRNA-GAS5 polymorphisms. The LncRNA-GAS5 and miR-21 target prediction was performed using bioinformatics software. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) were performed to assess GAS5 and miR-21 mRNA expression and PTEN protein expression. The results revealed that rs145204276 resulted in a decreased risk of SLE (DD genotypes vs II genotypes: adjusted OR = 0.538, 95% CI, 0.30-0.97, P = .039; ID genotypes vs II genotypes: adjusted OR = 0.641, 95% CI, 0.46-0.89, P = .007; ID/DD genotypes vs II genotypes: adjusted OR = 0.621, 95% CI, 0.46-0.84, P = .002; D alleles vs I alleles: adjusted OR = 0.680, 95% CI, 0.53-0.87, P = .002). A reduced incidence of renal disorders in SLE was found to be related to ID/DD genotypes and D alleles (ID/DD genotypes vs II genotypes: OR = 0.57, 95% CI, 0.36-0.92, P = .020; D alleles vs I alleles: OR = 0.63, 95% CI, 0.43-0.93, P = .019). However, no significant association of rs2235095, rs6790, rs2067079 and rs1951625 polymorphisms with SLE risk was observed (P > .05). Additionally, haplotype analysis showed that a decreased SLE risk resulted from the A-A-C-G-D haplotype (OR = 0.67, 95% CI, 0.49-0.91, P = .010). Also, patients in the SLE group showed a down-regulated expression of LncRNA-GAS5 and PTEN than the healthy volunteers; however, patients with rs145204276 ID/DD genotypes showed up-regulated expression of LncRNA-GAS5 and PTEN compared with patients carrying the II genotype. Furthermore, the miR-21 levels were considerably up-regulated in the SLE group than the healthy volunteers, and patients with rs145204276 ID/DD genotype had lower miR-21 levels than the ones with the II genotype. Thus, we found that the LncRNA-GAS5/miR-21/PTEN signalling pathway was involved in the development of SLE, where LncRNA-GAS5 acted as an miR-21 target, and miR-21 regulated the expression of PTEN. These findings indicated that the rs145204276 ID/DD genotypes in the LncRNA-GAS5 gene promoter region may be protected against SLE by up-regulating the expression of LncRNA-GAS5, which consecutively regulated miR-21 and PTEN levels.

8.
ACS Appl Mater Interfaces ; 13(13): 15881-15889, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779139

RESUMO

Dye sensitization achieving photoelectrochemical (PEC) signal amplification for ultrasensitive bioanalysis has undergone a major breakthrough. In this proposal, an innovative PEC sensing platform is developed by combining Z-scheme WO3@SnS2 photoactive materials and a G-wire superstructure as well as a dye sensitization enhancement strategy. The newly synthesized WO3@SnS2 heterojunction with outstanding PEC performance is employed as a photoelectrode matrix. Due to the formation of the Z-scheme heterojunction between WO3 and SnS2, the migration dynamics of the photogenerated carrier is evidently augmented. To improve sensitivity, the target excision-driven dual-cycle signal amplification strategy is introduced to output exponential c-myc fragments. Crystal violet is then conjugated into the G-quadruplex to amplify the PEC signal, where crystal violet generates excited electrons by capturing visible light and rapidly injects electrons into the conduction band of SnS2, suppressing the recombination of the photo-induced carrier. Moreover, the G-wire superstructure acts as a universal amplification pathway, ensuring adequate crystal violet loads. Specifically, the biosensor for uracil-DNA glycosylase quantification displays a wide detection range (0.0005-1.0 U/mL) and a lower detection limit (0.00025 U/mL). Furthermore, the Z-scheme electron migration mechanism and the crystal violet sensitization effect are discussed in detail. The construction of the PEC sensor provides a new consideration for signal amplification and material design.

9.
Ann Med ; 53(1): 459-469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33754900

RESUMO

OBJECTIVES: The impact of Pseudomonas aeruginosa on the prognosis of bronchiectasis remains controversial. This study aimed to explore the prognostic value of P. aeruginosa in adult patients with bronchiectasis in central-southern China. PATIENTS AND METHODS: This prospective cohort study enrolled 1,234 patients with bronchiectasis between 2013 and 2019. The independent impact of P. aeruginosa on all-cause mortality, annual exacerbations, and hospitalizations was assessed. RESULTS: P. aeruginosa was isolated from 244 patients (19.8%). A total of 188 patients died over a follow-up period of 16 (1-36) months. Patients with P. aeruginosa had a longer disease course, poorer lung function, more lung lobe involvement, and more severe Bronchiectasis Severity Index (BSI) stage than those without P. aeruginosa. The independent impact of P. aeruginosa was observed on frequent hospitalizations but not on mortality and frequent exacerbations. Moderate- or high-risk comorbidities increased the risk of mortality (hazard ratio [HR]: 1.93, 95% confidence interval [CI]: 1.26-2.95), and this effect was magnified by the presence of P. aeruginosa (HR: 2.11, 95% CI: 1.28-3.48). CONCLUSIONS: P. aeruginosa infection acts as a marker of disease severity as well as predictor of frequent hospitalizations. P. aeruginosa had no independent effect on all-cause mortality. P. aeruginosa combined with moderate- or high-risk comorbidities posed an increased risk of mortality. The management of comorbidities may be a critical target during the treatment of P. aeruginosa infection in bronchiectasis.KEY MESSAGE:P. aeruginosa increased the risk of frequent hospitalizations; however, it had no independent impact on all-cause mortality.P. aeruginosa combined with moderate- or high-risk comorbidities posed an increased risk of mortality.The management of comorbidities may be a critical target during the treatment of P. aeruginosa infection in bronchiectasis.

10.
Theor Appl Genet ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33655424

RESUMO

KEY MESSAGE: The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.

11.
Plant J ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547692

RESUMO

The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.

12.
Medicine (Baltimore) ; 100(4): e24427, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33530242

RESUMO

ABSTRACT: The quality control of fetal sonographic (FS) images is essential for the correct biometric measurements and fetal anomaly diagnosis. However, quality control requires professional sonographers to perform and is often labor-intensive. To solve this problem, we propose an automatic image quality assessment scheme based on multitask learning to assist in FS image quality control. An essential criterion for FS image quality control is that all the essential anatomical structures in the section should appear full and remarkable with a clear boundary. Therefore, our scheme aims to identify those essential anatomical structures to judge whether an FS image is the standard image, which is achieved by 3 convolutional neural networks. The Feature Extraction Network aims to extract deep level features of FS images. Based on the extracted features, the Class Prediction Network determines whether the structure meets the standard and Region Proposal Network identifies its position. The scheme has been applied to 3 types of fetal sections, which are the head, abdominal, and heart. The experimental results show that our method can make a quality assessment of an FS image within less a second. Also, our method achieves competitive performance in both the segmentation and diagnosis compared with state-of-the-art methods.


Assuntos
Feto/diagnóstico por imagem , Redes Neurais de Computação , Garantia da Qualidade dos Cuidados de Saúde/estatística & dados numéricos , Ultrassonografia Pré-Natal/normas , Abdome/diagnóstico por imagem , Abdome/embriologia , Feminino , Coração Fetal/diagnóstico por imagem , Coração Fetal/embriologia , Cabeça/diagnóstico por imagem , Cabeça/embriologia , Humanos , Gravidez , Padrões de Referência
13.
Medicine (Baltimore) ; 100(4): e24490, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33530268

RESUMO

RATIONALE: Conjoined twins are a rare complication of monochorionic pregnancies and an extremely rare condition in spontaneous triplet pregnancies. We report a case of conjoined twins in a spontaneous monochorionic triplet pregnancy. The conjoined twins might have suffered from twin anemia-polycythemia sequence, which was reported to be extremely rare. PATIENT CONCERNS: A 26-year-old woman conceived spontaneously with an obstetric history of invasive mole 4 years ago. DIAGNOSES: We initially misdiagnosed her as having monochorionic triamniotic triplets at 10 weeks of gestation. However, we confirmed conjoint twins with the monochorionic diamniotic triplet pregnancy at 12 weeks of gestation and classified them as omphalopagus. INTERVENTIONS: As the woman decided to continue the pregnancy, regular and careful antenatal care was conducted. OUTCOMES: Unexpectedly, she had a stillbirth 3 weeks later and had to terminate the pregnancy at 15 weeks of gestation. After abortion, the diagnosis of omphalopagus was confirmed in the induced fetuses. Moreover, the skin colors of the conjoined twins were different: one was plethoric, and the other was pale. Additionally, the parents agreed to examine the chromosome of the fetuses, and the results were normal. CONCLUSION: Dichorionic triplet and monochorionic triplet pregnancies have a poorer prognosis than trichorionic triplet pregnancies. Surgery is the main therapy for conjoined twins; however, most conjoined twins in triplet pregnancies cannot survive, including omphalopagus twins. The conjoined twins may have suffered from twin anemia-polycythemia sequence, which could probably not be diagnosed intrauterine. Transvaginal probe and 3-dimensional ultrasound may be helpful for clarifying the diagnosis in early pregnancy.


Assuntos
Trigêmeos , Gêmeos Unidos , Aborto Eugênico , Adulto , Feminino , Humanos , Gravidez , Gravidez de Trigêmeos , Natimorto , Ultrassonografia Doppler em Cores , Ultrassonografia Pré-Natal
14.
Asian Pac J Cancer Prev ; 22(2): 333-340, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639645

RESUMO

OBJECTIVE: Serum protein concentrations are diagnostically and prognostically valuable in cancer and other diseases, but their measurement via blood test is uncomfortable, inconvenient, and costly. This study investigates the possibility of predicting albumin, globulin, and albumin-globulin ratio from easily accessible physical characteristics (height, weight, Body Mass Index, age, gender) and vital signs (systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, pulse) using advanced machine learning techniques. METHODS: We obtained albumin concentration, globulin concentration, albumin-globulin ratio and predictor information (physical characteristics, vital signs) from physical exam records of 46,951 healthy adult participants in Hangzhou, China. We trained a computational model to predict each serum protein concentration from the predictors and then evaluated the predictive accuracy of each model on an independent portion of the dataset that was not used in model training. We also determined the relative importance of each feature within the model. RESULTS: Prediction accuracies were r=0.540 (95% CI: 0.539-0.540; Pearson r) for albumin, r=0.250 (95% CI: 0.249-0.251) for globulin, and r=0.373 (95% CI: 0.372-0.374) for albumin-globulin ratio. The most important predictive features were age (100% ± 0.0%; mean ± 95% CI of normalized importance), gender (34.4% ± 0.7%), pulse (25.6% ± 1.3%) and Body Mass Index (24.4% ± 2.3%) for albumin, pulse (83.7% ± 3.8%) for globulin, and age (99.2% ± 1.0%), gender (59.2% ± 1.7%), Body Mass Index (46.1% ± 4.2%) and height (40.0% ± 3.8%) for albumin-globulin ratio. CONCLUSIONS: Our models predicted serum protein concentrations with appreciable accuracy showing the promise of this approach. Such models could serve to augment existing tools for identifying "at-risk" individuals for follow-up with a blood test.

15.
Plant Biotechnol J ; 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567151

RESUMO

Improving plant biomass yield and/or feedstock quality for highly efficient lignocellulose conversion has been the main research focus in genetic modification of switchgrass (Panicum virgatum L.), a dedicated model plant for biofuel production. Here, we proved that overexpression of miR396 (OE-miR396) leads to reduced plant height and lignin content mainly by reducing G-lignin monomer content. We identified nineteen PvGRFs in switchgrass and proved thirteen of them were cleaved by miR396. MiR396-targeted PvGRF1, PvGRF9 and PvGRF3 showed significantly higher expression in stem. By separately overexpressing rPvGRF1, 3 and 9, in which synonymous mutations abolished the miR396 target sites, and suppression of PvGRF1/3/9 activity via PvGRF1/3/9-SRDX overexpression in switchgrass, we confirmed PvGRF1 and PvGRF9 played positive roles in improving plant height and G-lignin content. Overexpression of PvGRF9 was sufficient to complement the defective phenotype of OE-miR396 plants. MiR396-PvGRF9 modulates these traits partly by interfering GA and auxin biosynthesis and signalling transduction and cell wall lignin, glucose and xylan biosynthesis pathways. Moreover, by enzymatic hydrolysis analyses, we found that overexpression of rPvGRF9 significantly enhanced per plant sugar yield. Our results suggest that PvGRF9 can be utilized as a candidate molecular tool in modifying plant biomass yield and feedstock quality.

16.
Plant Cell Environ ; 2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33583055

RESUMO

Small heat shock proteins (sHSPs), a family of the ubiquitous stress proteins in plants acting as molecular chaperones to protect other proteins from stress-induced damage, have been implicated in plant growth and development as well as plant response to environmental stress, especially heat stress. In this study, a chloroplast-localized sHSP, AsHSP26.8, was overexpressed in creeping bentgrass (Agrostis stolonifera L.) to study its role in regulating plant growth and stress response. Transgenic (TG) creeping bentgrass plants displayed arrested root development, slow growth rate, twisted leaf blades and are more susceptible to heat and salt but less sensitive to drought stress compared to wild-type (WT) controls. RNA-seq analysis revealed that AsHSP26.8 modulated the expression of genes in auxin signalling and stress-related genes such as those encoding HSPs, heat shock factors and other transcription factors. Our results provide new evidence demonstrating that AsHSP26.8 negatively regulates plant growth and development and plays differential roles in plant response to a plethora of diverse abiotic stresses.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33595353

RESUMO

Background: Laparoscopic orchiopexy (LO) has become a standard procedure for the treatment of nonpalpable undescended testes (UDT). LO for palpable UDT is still controversial. The aim of this study is to explore the method and effect of LO procedure for palpable UDT in children suffering from cryptorchidism. Methods: A retrospective study was performed for LO and traditional inguinal incision orchiopexy (TIO) for palpable UDT. A total of 291 children were enrolled, and they were aged 9-96 months with either left- or right-side palpable inguinal canalicular testes. Patients with testes that were nonpalpable, ectopic, and retractable were excluded. One hundred seventy patients received LO and 121 patients received TIO. Patient age, operative time, and clinical outcomes were reviewed. Independent t-test and Fisher's exact test were performed by SPSS 25.0 software. Results: The mean operative time (30.77 ± 6.02 minutes versus 44.76 ± 6.70 minutes) and postoperative normal activity time (1.25 ± 0.43 days versus 2.48 ± 0.68 days) of LO were significantly shorter than those of TIO group (P < .05). Forty-seven of 49 cases (95.9%) aged <1 year successfully achieved LO. Conclusion: LO is an appropriate choice for palpable UDT, especially in younger children aged <2 years. The success rate of LO decreased with age.

18.
Neoplasma ; 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33502891

RESUMO

This study aims to investigate the role of the long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in the regulation of anoikis resistance of ovarian cancer cells, a prerequisite for metastasis and chemoresistance in ovarian cancer cells. Ovarian cancer SKOV3 cells were cultured in an ultra-low attachment system to establish an anoikis model. The relationship between cellular anoikis capability and HOTAIR expression level was studied by flow cytometry and RT-PCR. The ability of spheroid formation, migration, and invasion of the suspended cells was assessed following the knockdown of HOTAIR expression. The expression of EZH2, H3K27me3, representative targets of EZH2, and anoikis-related biomarkers was also detected. An increase in the duration of suspension culture time rendered the SKOV3 cells anoikis-resistant with a significantly lower apoptotic rate compared to the adherent cells. HOTAIR expression in the suspension cells increased significantly, while that in the adherent cells did not. Following small interfering RNA (siRNA)-mediated knockdown of HOTAIR expression, the abilities of anoikis resistance, migration, and invasion decreased in the suspension cells. Knockdown of HOTAIR levels also reduced the spheroid forming ability of the tumor cells in continuous suspension cultures. Moreover, EZH2 expression correlated with HOTAIR expression, thus regulating the expression of miR-193a and DOK2 via introducing H3K27me3. Western blot analysis of anoikis-related markers showed that N-cadherin, ZEB1, and TWIST1 were downregulated following inhibition of HOTAIR, while E-cadherin and ErbB3 were upregulated. In conclusion, HOTAIR enhances the anoikis resistance and spheroid forming ability of ovarian cancer cells by recruiting EZH2 and influencing H3K27 methylation that may contribute to migration, invasion, and chemoresistance of ovarian cancer cells.

19.
Environ Sci Process Impacts ; 23(2): 357-366, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33511973

RESUMO

Indoor dust ingestion is one of the main pathways for human exposure to organophosphate flame retardants (PFRs). The urinary concentrations of diesters (DAPs) are usually used as biomarkers to assess human exposure to PFRs. In this study, the PFR and DAP levels were measured in morning and evening urine samples of 30 workers from an e-waste dismantling site in southern China. The indoor dust samples were also collected from workshops and houses for analyzing associations between PFR and DAP levels in urine and dust. Tris(1-chloro-2-propyl) phosphate (TCIPP) and triphenyl phosphate (TPHP) were the dominant PFRs in dust, while bis(2-chloroethyl) phosphate (BCEP) and diphenyl phosphate (DPHP) were the major DAPs in dust. A significant positive correlation was observed between TPHP and DPHP concentrations in dust (p < 0.001), suggesting their potentially same source and the degradation of TPHP to form DPHP. TCIPP and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were the predominant PFRs, and BCEP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and DPHP were the main DAPs in both the morning and evening urine samples. The DPHP levels in evening urine samples were significantly correlated with TPHP and DPHP levels (p < 0.01) in dust. A similar correlation was found for the BCEP levels in the evening urine samples and the TCEP and BCEP levels (p < 0.01) in dust. These results indicated that in addition to being biotransformed from their respective parent PFRs, direct ingestion from indoor dust could also be the potential source for urinary DPHP and BCEP. Since relatively low detection frequencies were observed for bis(1-chloro-2-propyl) phosphate (BCIPP) and bis(butoxyethyl) phosphate (BBOEP) in urine, they may not be the major metabolites of TCIPP and tris(2-butoxyethyl) phosphate (TBOEP), respectively, in the human body. However, BDCIPP can be considered a useful biomarker because it is a unique metabolite of TDCIPP and has high detection frequencies in urine samples. The results of this study indicated the limitations of solely using urinary DAPs as biomarkers for the evaluation of human exposure to PFRs, and certain PFRs as well as hydroxylated PFRs (OH-PFRs) should also be considered for urinary biomonitoring in future studies.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Monitoramento Biológico , China , Poeira/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise
20.
Hum Genet ; 140(5): 761-773, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389130

RESUMO

Genetics-associated asthenoteratozoospermia is often seen in patients with multiple morphological abnormalities of the sperm flagella (MMAF). Although 24 causative genes have been identified, these explain only approximately half of patients with MMAF. Since sperm flagella and motile cilia (especially respiratory cilia) have similar axonemal structures, many patients with MMAF also exhibit respiratory symptoms, such as recurrent airway infection, chronic sinusitis, and bronchiectasis, which are frequently associated with primary ciliary dyskinesia (PCD), another recessive disorder. Here, exome sequencing was conducted to evaluate the genetic cause in 53 patients with MMAF and classic PCD/PCD-like symptoms. Two homozygous missense variants and a compound-heterozygous variant in the BRWD1 gene were identified in three unrelated individuals. BRWD1 staining was detected in the whole flagella and respiratory cilia of normal controls but was absent in BRWD1-mutated individuals. Transmission electron microscopy and immunostaining demonstrated that BRWD1 deficiency in human affected respiratory cilia and sperm flagella differently, as the absence of outer and inner dynein arms in sperm flagellum and respiratory cilia, while with a decreased number and outer doublet microtubule defects of respiratory cilia. To our knowledge, this is the first report of a BRWD1-variant-related disease in humans, manifesting as an autosomal recessive form of MMAF and PCD/PCD-like symptoms. Our data provide a basis for further exploring the molecular mechanism of BRWD1 gene during spermatogenesis and ciliogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...