Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 733276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760695

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) are the standard of care for non-small cell lung cancer (NSCLC) patients with EGFR exon 19 deletion and L858R mutations. However, no EGFR TKI has been approved for NSCLC patients harboring insertion mutations in EGFR exon 20 (EGFRex20ins), a subgroup of uncommon EGFR mutations resistant to first-generation EGFR TKIs. This unmet clinical challenge is further complicated by disease progression due to brain metastases (BMs), which limits the use of EGFR TKIs with low intracranial activity. Osimertinib, a third-generation EGFR TKI with high CNS activity, has demonstrated superior efficacy as a first-line treatment for EGFR-mutant NSCLC with or without BM. The VEGF pathway is a key mediator of cancer metastasis and resistance to EGFR TKIs. Accumulating evidence has demonstrated that the addition of anti-VEGF agents to EGFR TKIs provides an alternative treatment option for the clinical management of EGFR-mutant NSCLC. We herein report an NSCLC case with a novel EGFRex20ins mutation D770_N771insGT and multiple brain metastases who briefly responded to first-line osimertinib treatment and subsequently achieved prolonged disease control with osimertinib plus bevacizumab as second-line treatment. Our case suggests that osimertinib in combination with bevacizumab may be an effective option for NSCLC patients with specific EGFRex20ins mutations and brain metastases.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34639591

RESUMO

(1) Background: school travel is an important part of a child's daily activities. A comfortable walking environment can encourage children to walk to school. The existing methods of evaluating walking environments are not specific to children's walks to school. (2) Methods: this study proposes a method of evaluating walking comfort in children traveling to school at street scale. Related indexes were selected that reflect children's school travel behavior and their needs in street environments based on walking environment audit tools. Factor analysis was then used to calculate the relative weight of each index. (3) Results: the new evaluation method was tested in the neighborhoods around the First Central Primary School in Hedong District, Tianjin, China. The walking comfort for children's school travel was evaluated in eight indexes: effective street width; street flatness; street cleanliness; interface diversity; buffer; shade coverage; green looking ratio; and sound decibels. Different classes and types of streets were found to have various vulnerabilities. (4) Conclusions: this evaluation method can accurately locate the weak spots in streets to improve the local policymakers' perception of street environments, which can greatly facilitate the implementation of precise measures to promote children walking to school.


Assuntos
Instituições Acadêmicas , Caminhada , Criança , China , Humanos , Características de Residência , Viagem
3.
Chem Sci ; 12(36): 12130-12137, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667578

RESUMO

We report herein that dendron-shaped macromolecules AB n crystallize into well-ordered pyramid-like structures from mixed solvents, instead of spherical motifs with curved structures, as found in the bulk. The design of the asymmetric molecular architecture and the choice of mixed solvents are applied as strategies to manipulate the crystallization process. In mixed solvents, the solvent selection for the Janus macromolecule and the existence of dominant crystalline clusters contribute to the formation of flat nanosheets. Whereas during solvent evaporation, the bulkiness of the asymmetric macromolecules easily creates defects within 2D nanosheets which lead to their spiral growth through screw dislocation. The size of the nanosheets and the growth into 2D nanosheets or 3D pyramidal structures can be regulated by the solvent ratio and solvent compositions. Moreover, macromolecules of higher asymmetry generate polycrystals of lower orderliness, probably due to higher localized stress.

4.
Angew Chem Int Ed Engl ; 60(11): 5833-5837, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295092

RESUMO

The accurate distribution of countercations (Rb+ and Sr2+ ) around a rigid, spherical, 2.9-nm size polyoxometalate cluster, {Mo132 }42- , is determined by anomalous small-angle X-ray scattering. Both Rb+ and Sr2+ ions lead to shorter diffuse lengths for {Mo132 } than prediction. Most Rb+ ions are closely associated with {Mo132 } by staying near the skeleton of {Mo132 } or in the Stern layer, whereas more Sr2+ ions loosely associate with {Mo132 } in the diffuse layer. The stronger affinity of Rb+ ions towards {Mo132 } than that of Sr2+ ions explains the anomalous lower critical coagulation concentration of {Mo132 } with Rb+ compared to Sr2+ . The anomalous behavior of {Mo132 } can be attributed to majority of negative charges being located at the inner surface of its cavity. The longer anion-cation distance weakens the Coulomb interaction, making the enthalpy change owing to the breakage of hydration layers of cations more important in regulating the counterion-{Mo132 } interaction.

5.
Mitochondrial DNA B Resour ; 5(3): 2215-2216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33366978

RESUMO

The complete chloroplast genome sequence of Populus davidiana was characterized from Illumina pair-end sequencing. The chloroplast genome of P. davidiana was 156,868 bp in length, containing a large single-copy region (LSC) of 84,976 bp, a small single-copy region (SSC) of 16,606 bp, and two inverted repeat (IR) regions of 27,643 bp. The overall GC content is 30.70%, while the correponding values of the LSC, SSC, and IR regions are 64.6%, 69.2%, and 60.1%, respectively. The genome contains 131 complete genes, including 86 protein-coding genes (62 protein-coding gene species), 37 tRNA genes (29 tRNA species) and 8 rRNA genes (4 rRNA species). The Neighbour-joining phylogenetic analysis showed that P. davidiana and Populus rotundifolia clustered together as sisters to other Populus species.

6.
Chem Commun (Camb) ; 56(97): 15341-15344, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33231249

RESUMO

Zwitterionic Ni(ii)-catalyzed carbonylative copolymerization of ethylene and cyclic ethers for the synthesis of photolytically and hydrolytically degradable polymers is reported. The segmented tetrapolymer products are composed of polyketone segments from alternating enchainments of CO and ethylene and poly(ether-co-ester) segments from non-alternating enchainments of CO, ethylene oxide, and tetrahydrofuran. Plastic and elastic products can be obtained via the general synthetic platform with the appropriate choice of catalyst and polymerization conditions.

7.
J Phys Chem B ; 124(44): 9958-9966, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33085899

RESUMO

The role of chiral counterions on the attraction and self-assembly of chiral Pd12L24 metal organic cages (MOCs) with NO3- being the original counterion is studied by laser light scattering and isothermal titration calorimetry. Nitrates can trigger the self-assembly of macrocationic Pd12L24 into hollow spherical blackberry-type supramolecular structures via counterion-mediated attraction. Although chiral counteranions, such as N-(tert-butoxycarbonyl)-alanine (Boc-Ala), have weaker interaction with the MOCs compared to NO3-, they can induce different assembly behaviors between two enantiomeric MOCs by inhibiting the MOC-nitrate binding and weakening the interaction between them. The d-counterions are capable of selectively suppressing and slowing down the assembly of l-MOCs and also considerably decreasing their assembly size due to the much weaker MOC-nitrate interaction. The same scenario is observed for l-counterions when interacting with the d-MOCs. This study unveils the role of weakly associated chiral counterions on the central chiral macroions, especially their supramolecular structure formation, and provides additional evidence on the mechanism of the homochirality phenomenon.

8.
Chempluschem ; 85(10): 2316-2319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33058510

RESUMO

We report a feasible method to control self-recognition during the self-assembly of a hydrophilic macroion, phosphate-functionalized γ-cyclodextrin (γ-CD-P), though host-guest interactions. We confirmed that γ-CD-P can form a host-guest complex with a super-chaotropic anion, namely the B12 F12 2- borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ-CD-P, which has a higher charge density, can be distinguished from the uncomplexed γ-CD-P, leading to self-sorting behavior during the self-assembly process, confirmed by the formation of two types of individual supramolecular structures (Rh of ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self-recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading.

9.
J Am Chem Soc ; 142(41): 17508-17514, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32965108

RESUMO

Polyoxometalate molybdenum blue (MB) complexes typically exist as discrete multianionic clusters and are composed of repeating Mo building units. MB wheels such as {Mo176} and {Mo154} are made from pentagon-centered {Mo8} building blocks joined by equal number of {Mo1} units as loin, and {Mo2} dimer units as skirt along the ring edge, with the ring sizes of the MB wheels modulated by the {Mo2} units. Herein we report a new class of contracted lanthanide-doped MB structures that have replaced all the {Mo2} units with lanthanide ions on the inner rim, giving the general formula {Mo90Ln10}. We show three examples of this new decameric {Mo90Ln10} (Ln = La, Ce, and Pr) framework synthesized by high temperature reduction and demonstrate that later Ln ions result in {Mo92Ln9} (Ln = Nd, Sm), conserving one {Mo2} linker unit in its structure, as a consequence of the lanthanide contraction. Remarkably the {Mo90Ln10} compounds are the first examples of charge-neutral molybdate wheels as confirmed by BVS, solubility experiments, and redox titrations. We detail our full synthetic optimization for the isolation of these clusters and complete characterization by X-ray, TGA, UV-vis, and ICP studies. Finally, we show that this fine-tuned self-assembly process can be utilized to selectively enrich Ln-MB wheels for effective separation of lanthanides.

10.
Chemistry ; 26(70): 16802-16810, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32844449

RESUMO

Keggin clusters are the most widely used polyoxometalate building blocks for the construction advanced materials, but effective methods for precisely recognizing the isostructural analogues of Keggins are still limited. In this study we employed the zwitterionic molecule 4,4'-dipyridyl N,N'-dioxide as a recognition receptor to specifically bind to the three Keggin analogues PW12 O40 3- , PMo12 O40 3- , and SiW12 O40 4- , which separately co-assembled into three different types of spherical charged colloids of different sizes. The recognition phenomena were confirmed by electrochemical methods and their crystallization behavior. Compared with solely anion-cation interaction-driven systems, the synergism with the anion-π interactions between the superchaotropic Keggins and the electron-deficient pyridine rings is believed to enhance the recognition. This observation is intriguing as the long-range solution assembly of Keggins is mainly driven by short-range anion-π interactions. Our results show that the little-noticed hydration shell of Keggins is significantly influenced by the superchaotropic effect, leading to differentiated binding affinity to the receptors and more obvious recognition phenomena between tungsten/molybdenum Keggin analogues.

11.
Langmuir ; 36(35): 10519-10527, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787054

RESUMO

Macroions, as soluble ions with a size on the nanometer scale, show unique solution behavior different from those of simple ions and large colloidal suspensions. In macroionic solutions, the counterions are known to be important and well-explored. However, the role of co-ions (ions carrying the same type of charge as the macroions) is often ignored. Here, through experimental and simulation studies, we demonstrate the role of co-ions as a function of co-ion size on their interaction with the macroions (using {Mo72Fe30} and {SrPd12} as models) and the related self-assembly into blackberry-type structures in dilute solutions. Several regimes of unique co-ion effects are clearly identified: small ions (halides, oxoacid ions), subnanometer-scaled bulky ions (lacunary Keggin and dodecaborate ions), and those with sizes comparable to the macroions. Small co-ions have no observable effect on the self-assembly of fully hydrophilic {Mo72Fe30}, while due to hydrophobic interaction and intermolecular hydrogen bonds, the small co-ions show influences on the self-assembly of hydrophobic {SrPd12}. Subnanometer ions, a.k.a. "superchaotropic ions", are still too small to assemble into a blackberry by themselves, but they can coassemble with the macroions, showing a strong interaction with the macroionic system. When the co-ion size is comparable to that of the macroions, they assemble independently instead of assembling with the macroions, leading to the previously reported unique self-recognition phenomenon for macroions.

12.
Inorg Chem ; 59(10): 6747-6754, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32250607

RESUMO

We report the synthesis, characterization, and solution self-assembly of plenary Nb6P2W12-based transition-metal substituted polyoxometalate, which is obtained by simply adding transition metals (Co2+) into aqueous solution containing cluster [(NbO2)6P2W12O56]12-, which is obtained by an in situ synthetic method. The incorporation of Co2+ ions significantly affects the crystal structure, resulting in the formation of a 1D chain-like crystal and the first example of a niobotungstate-based cobalt derivative cluster. The behavior and stability of this cluster in solution are confirmed by time-resolved static light scattering, dynamic light scattering, small-angle X-ray scattering, and electrospray mass spectrometry studies.

13.
Langmuir ; 36(17): 4702-4710, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32293900

RESUMO

Lactic acid-functionalized chiral fullerene (C60) molecules are used as models to understand chiral selection in macroionic solutions involving chiral macroions, chiral counterions, and/or chiral co-ions. With the addition of Zn2+ cations, the C60 macroions exhibit slow self-assembly behavior into hollow, spherical, blackberry-type structures, as confirmed by laser light scattering (LLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Chiral counterions with high charge density show no selection to the chirality of AC60 macroions (LAC60 and DAC60) during their self-assembly process, while obvious chiral discrimination between the assemblies of LAC60 and DAC60 is observed when chiral counterions with low charge density are present. Compared with chiral counterions, chiral co-ions show weaker effects on chiral selection with larger amounts needed to trigger the chiral discrimination between LAC60 and DAC60. However, they can induce a higher degree of discrimination when abundant chiral co-ions are present in solution. Furthermore, the self-assembly of chiral AC60 macroions is fully suppressed by adding significant amounts of neutral molecules with opposite chirality. Thermodynamic parameters from isothermal titration calorimetry (ITC) reveal that chiral selection is controlled by the ion pairing and the destruction of solvent shells between ions, and meanwhile originates from the delicate balance between electrostatic interaction and molecular chirality.

14.
Angew Chem Int Ed Engl ; 59(13): 5226-5234, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31957938

RESUMO

How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.

15.
ACS Nano ; 14(2): 1811-1822, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31995358

RESUMO

We observe the formation of highly controllable and responsive onion-like vesicles by using rigid sphere-rod amphiphilic hybrid macromolecules, composed of charged, hydrophilic Keggin-type clusters (spheres) and hydrophobic rod-like oligofluorenes (OFs). Unlike the commonly used approach, which mainly relies on chain bending of flexible molecules to satisfy different curvatures in onion-like vesicles, the rigid hybrids form flexible interdigitations by tuning the angles between OFs, leading to the formation of bilayers with different sizes. The self-assembled vesicles possess complete onion-like structures from most inner to outer layers, and their size (layer number) can be accurately manipulated by different solution conditions including solvent polarity, ionic strength, temperature, and hybrid concentration, with fixed interbilayer distance under all conditions. Moreover, the vesicle size (layer number) shows excellent reversibility to the change of temperature. The charged feature of spheres, rod length, and overall hybrid architecture shows significant effects on the formation of such onion-like vesicles.

16.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569430

RESUMO

Accurate crop classification is the basis of agricultural research, and remote sensing is the only effective measuring technique to classify crops over large areas. Optical remote sensing is effective in regions with good illumination; however, it usually fails to meet requirements for highly accurate crop classification in cloud-covered areas and rainy regions. Synthetic aperture radar (SAR) can achieve active data acquisition by transmitting signals; thus, it has strong resistance to cloud and rain interference. In this study, we designed an improved crop planting structure mapping framework for cloudy and rainy regions by combining optical data and SAR data, and we revealed the synchronous-response relationship of these two data types. First, we extracted geo-parcels from optical images with high spatial resolution. Second, we built a recurrent neural network (RNN)-based classifier suitable for remote sensing images on the geo-parcel scale. Third, we classified crops based on the two datasets and established the network. Fourth, we analyzed the synchronous response relationships of crops based on the results of the two classification schemes. This work is the basis for the application of remote sensing data for the fine mapping and growth monitoring of crop planting structures in cloudy and rainy areas in the future.

17.
Langmuir ; 35(24): 7603-7616, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117725

RESUMO

Hybrids composed of nanoscale inorganic clusters and organic ligands are ideal models for understanding the different attractive forces during the self-assembly processes of complex macromolecules in solution. The counterion-mediated attraction induced by electrostatic interaction from the large, hydrophilic macroionic clusters can compete or cooperate with other types of attractive forces such as hydrophobic interactions, hydrogen bonding, π-π stacking, and cation-π interactions from the organic ligands, consequently determining the solution behaviors of the hybrid molecules including their self-assembly process and the final supramolecular structures. The incorporation of organic ligands also leads to interesting responsive behaviors to external stimuli. Through the manipulation of the hybrid composition, architecture, topology, and solution conditions (e.g., solvent polarity, pH, and temperature), versatile self-assembled morphologies can be achieved, providing new scientific opportunities and potential applications.

18.
Eur J Inorg Chem ; 2019(3-4): 380-386, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31007577

RESUMO

Incorporating the building blocks of nature (e.g., peptides and DNA) into inorganic polyoxometalate (POM) clusters is a promising approach to improve the compatibilities of POMs in biological fields. To extend their biological applications, it is necessary to understand the importance of different non-covalent interactions during self-organization. A series of Anderson POM-peptide hybrids have been used as a simple model to demonstrate the role of different interactions in POM-peptide (biomolecules) systems. Regardless of peptide chain length, these hybrids follow similar solution behaviors, forming hollow, spherical supramolecular structures in acetonitrile/water mixed solvents. The incorporation of peptide tails introduces interesting stimuli-responsive properties to temperature, hybrid concentration, solvent polarity and ionic strength. Unlike the typical bilayer amphiphilic vesicles, they are found to follow the blackberry-type assemblies of hydrophilic macroions, which are regulated by electrostatic interaction and hydrogen bonding. The formation of electrostatic assemblies before the supramolecular formation is confirmed by ion-mobility mass spectrometry (IMS-MS).

19.
Chem Commun (Camb) ; 55(5): 636-639, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30556561

RESUMO

We have designed and synthesized a pair of sequence isomeric giant surfactants based on polystyrene (PS) and polyhedral oligomeric silsesquioxane (POSS) nanoparticles. Although these two macromolecules possess identical compositions as "sequence isomers", the distinctly arranged POSS sequences lead to different molecular packing conformations, and further induce distinguished self-assembly behaviors in DMF/water solutions.

20.
Sensors (Basel) ; 18(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572678

RESUMO

Radiometric normalization attempts to normalize the radiomimetic distortion caused by non-land surface-related factors, for example, different atmospheric conditions at image acquisition time and sensor factors, and to improve the radiometric consistency between remote sensing images. Using a remote sensing image and a reference image as a pair is a traditional method of performing radiometric normalization. However, when applied to the radiometric normalization of long time-series of images, this method has two deficiencies: first, different pseudo-invariant features (PIFs)-radiometric characteristics of which do not change with time-are extracted in different pairs of images; and second, when processing an image based on a reference, we can minimize the residual between them, but the residual between temporally adjacent images may induce steep increases and decreases, which may conceal the information contained in the time-series indicators, such as vegetative index. To overcome these two problems, we propose an optimization strategy for radiometric normalization of long time-series of remote sensing images. First, the time-series gray-scale values for a pixel in the near-infrared band are sorted in ascending order and segmented into different parts. Second, the outliers and inliers of the time-series observation are determined using a modified Inflexion Based Cloud Detection (IBCD) method. Third, the variation amplitudes of the PIFs are smaller than for vegetation but larger than for water, and accordingly the PIFs are identified. Last, a novel optimization strategy aimed at minimizing the correction residual between the image to be processed and the images processed previously is adopted to determine the radiometric normalization sequence. Time-series images from the Thematic Mapper onboard Landsat 5 for Hangzhou City are selected for the experiments, and the results suggest that our method can effectively eliminate the radiometric distortion and preserve the variation of vegetation in the time-series of images. Smoother time-series profiles of gray-scale values and uniform root mean square error distributions can be obtained compared with those of the traditional method, which indicates that our method can obtain better radiometric consistency and normalization performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...