Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 6(1): 405, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795208

RESUMO

Thalidomide induces γ-globin expression in erythroid progenitor cells, but its efficacy on patients with transfusion-dependent ß-thalassemia (TDT) remains unclear. In this phase 2, multi-center, randomized, double-blind clinical trial, we aimed to determine the safety and efficacy of thalidomide in TDT patients. A hundred patients of 14 years or older were randomly assigned to receive placebo or thalidomide for 12 weeks, followed by an extension phase of at least 36 weeks. The primary endpoint was the change of hemoglobin (Hb) level in the patients. The secondary endpoints included the red blood cell (RBC) units transfused and adverse effects. In the placebo-controlled period, Hb concentrations in patients treated with thalidomide achieved a median elevation of 14.0 (range, 2.5 to 37.5) g/L, whereas Hb in patients treated with placebo did not significantly change. Within the 12 weeks, the mean RBC transfusion volume for patients treated with thalidomide and placebo was 5.4 ± 5.0 U and 10.3 ± 6.4 U, respectively (P < 0.001). Adverse events of drowsiness, dizziness, fatigue, pyrexia, sore throat, and rash were more common with thalidomide than placebo. In the extension phase, treatment with thalidomide for 24 weeks resulted in a sustainable increase in Hb concentrations which reached 104.9 ± 19.0 g/L, without blood transfusion. Significant increase in Hb concentration and reduction in RBC transfusions were associated with non ß0/ß0 and HBS1L-MYB (rs9399137 C/T, C/C; rs4895441 A/G, G/G) genotypes. These results demonstrated that thalidomide is effective in patients with TDT.

2.
Biomater Sci ; 7(5): 1940-1948, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30785129

RESUMO

Carbon dots have attracted rapidly growing interest in recent years. In this report, we prepared two cationic polymer-derived carbon dots (Taea-CD and Cyclen-CD, collectively called C-dots) via a hydrothermal method. Transmission electron microscopy (TEM) results show that the C-dots were sphere-like and the size distribution was 1.8 ± 0.4 nm for Taea-CD and 5.4 ± 2 nm for Cyclen-CD. The C-dots emitted bright blue fluorescence under UV light (365 nm). Confocal laser scanning microscopy (CLSM) assay indicates that the C-dots-mediated transfection process could be detected in real time, and their tunable fluorescence emission under different wavelengths could satisfy varying requirements. Luciferase assay indicates that the transformation from the polymer to CD is an effective strategy to improve the transfection efficiency (TE) of the materials. Moreover, the C-dots also exhibit higher serum tolerance and cell viability than commercially available polyethyleneimine (PEI). These results demonstrate that the preparation of carbon dots from polymers is a promising method for developing multifunctional gene vectors with high TE and biocompatibility.


Assuntos
Carbono/química , Portadores de Fármacos/química , Imagem Molecular , Nanopartículas/química , Polietilenoimina/química , Transfecção , Células HEK293 , Células HeLa , Humanos , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética
3.
Nanoscale ; 9(18): 5935-5947, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28440819

RESUMO

Carbon dot (CD)-based multifunctional delivery systems have shown great potential in both drug/gene delivery and bio-imaging. In this work, we present a strategy to simply construct amphiphilic CDs (ACDs) by conjugating hydrophobic alkyl epoxide to the surface amino groups of PEI 600-derived CDs. ACDs could well dissolve in water or organic solvents and emit bright fluorescence both in solutions and cells. 1HNMR also suggested that ACDs may form micelle-like structures in water, and their CMC could be determined. Enhanced green fluorescent protein (EGFP) expression and flow cytometry experiments showed that ACDs have higher transfection efficiency than Lipofectamine 2000 in A549 cells. Besides DNA, ACDs could also effectively transfect Sur siRNA toward A549 cells and cause early cell apoptosis. The 3D multicellular spheroids further confirmed their high potential for delivering therapeutic genes into the tumor tissue. On the other hand, ACDs also exhibited good drug loading ability. CLSM experiment results showed that DOX could be effectively internalized by the cell and slowly released from the drug/ACD complex. These results suggest that ACDs may not only serve as versatile delivery vectors with potential for applications in clinical cancer treatment, but also offer an inspiration for the discovery of CD-based gene/drug delivery systems.


Assuntos
Carbono , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Células A549 , Vetores Genéticos , Humanos , Micelas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...