Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Aging Cell ; : e13382, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128315

RESUMO

Hematopoietic stem cells (HSCs) reside in a quiescent niche to reserve their capacity of self-renewal. Upon hematopoietic injuries, HSCs enter the cell cycle and encounter protein homeostasis problems caused by accumulation of misfolded proteins. However, the mechanism by which protein homeostasis influences HSC function and maintenance remains poorly understood. Here, we show that C/EBP homologous protein (CHOP), demonstrated previously to induces cell death upon unfolded protein response (UPR), plays an important role in HSCs regeneration. CHOP-/- mice showed normal hematopoietic stem and progenitor cell frequencies in steady state. However, when treated with 5-FU, CHOP deficiency resulted in higher survival rates, associated with an increased number of HSCs and reduced level of apoptosis. In serial competitive transplantation experiments, CHOP-/- HSCs showed a dramatic enhancement of repopulation ability and a reduction of protein aggresomes. Mechanistically, CHOP deletion causes reduced ATF3 expression and further leads to decreased protein aggregation and ROS. In addition, CHOP-/- HSCs exhibited an increased resistance to IR-induced DNA damage and improved HSCs homeostasis and function in telomere dysfunctional (G3Terc-/- ) mice. In summary, these findings disclose a new role of CHOP in the regulation of the HSCs function and homeostasis through reducing ATF3 and ROS signaling.

2.
J Biol Chem ; : 100869, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119521

RESUMO

Pentatricopeptide repeat (PPR) proteins are a large family of proteins that act primarily at different post-transcriptional steps of organellar gene expression. We have previously found that the Schizosaccharomyces pombe PPR protein Ppr10 interacts with mitochondrial translational activator Mpa1, and both are essential for mitochondrial protein synthesis. However, it is unclear how these two proteins function in mitochondrial protein synthesis in S. pombe. In this study, we further investigated the role of Ppr10 and Mpa1 in mitochondrial protein synthesis. Mitochondrial translational initiation requires two initiation factors, Mti2 and Mti3, which bind to the small subunit of the mitochondrial ribosome (mt-SSU) during the formation of the mitochondrial translational initiation complex. Using sucrose gradient sedimentation analysis, we found that disruption of ppr10, mpa1 or the PPR motifs in Ppr10 impairs the association of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10 and Mpa1 may be required for the interaction of Mti2 and Mti3 with the mt-SSU during the assembly of mitochondrial translational initiation complex. Loss of Ppr10 perturbs the association of mitochondrially encoded cytochrome b (cob1) and cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled mitochondrial ribosomes. Proteomic analysis revealed that a fraction of Ppr10 and Mpa1 copurified with a subset of mitoribosomal proteins. The PPR motifs of Ppr10 are necessary for its interaction with Mpa1 and that disruption of these PPR motifs impairs mitochondrial protein synthesis. Our results suggest that Ppr10 and Mpa1 function together to mediate mitochondrial translational initiation.

3.
Mol Genet Genomics ; 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137900

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes (KCs). Onset of psoriasis is related to genetic, immune and environmental factors. The environment can interact with the genome through epigenetic modifications, including DNA methylation, and this modification is involved in the pathogenesis of psoriasis. In addition to a skin disease, psoriasis is also considered a systemic disease. We reviewed the current literature of psoriatic DNA methylation for studies from several aspects on the DNA methylation distribution patterns in different tissues/cells, single-nucleotide polymorphisms, and candidate disease genes and identified target genes regulated by DNA methylation that have been directly/indirectly validated. This review contributes to a comprehensive understanding of the important a role that DNA methylation plays in psoriasis from a holistic perspective and will promote the implementation of DNA methylation in diagnostic and therapeutic strategies for psoriatic patients.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33982328

RESUMO

BACKGROUND AND AIM: Increased aerobic glycolysis has been well-known as a hallmark of cancer, which is closely related to mitochondrial dysfunction. TFB2M (mitochondrial transcription factor B2) is a core mitochondrial transcription factor, which has been shown by us to play an oncogenic role in hepatocellular carcinoma (HCC). However, whether TFB2M contributes to the aerobic glycolysis in HCC cells remains unexplored. METHODS: The role and underlying molecular mechanisms of TFB2M in the regulation of aerobic glycolysis in HCC cells were systematically investigated by in vitro cell glucose metabolism and metabolomics analyses. Besides, the effects of TFB2M-regulated aerobic glycolysis in the growth and metastasis of HCC cells were also explored. RESULTS: Here, we show that TFB2M markedly enhanced the reprogramming of glucose metabolism from oxidative phosphorylation to aerobic glycolysis mainly through two mechanisms. On the one hand, TFB2M increased the expressions of glycolytic genes GAPDH, LDHA, GLUT1, and HK2. On the other hand, TFB2M decreased the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a critical regulator of mitochondrial respiration. Mechanistically, TFB2M regulates the upregulation of glycolytic genes and downregulation of PGC-1α mainly through NAD+ /SIRT3/HIF-1α signaling. Additionally, we found that TFBM2 promoted the progression of HCC cells through HIF-1α-regulated reprogramming of glucose metabolism. CONCLUSIONS: Our findings indicate that TFB2M serves as a critical glucose metabolic reprogramming mechanism in tumorigenesis, which could be used as potential therapeutic target in HCC.

5.
Eur J Cancer ; 151: 63-71, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964573

RESUMO

BACKGROUND: To investigate the value of post-induction chemotherapy (IC) cell-free Epstein-Barr virus DNA (cfEBV DNApostIC) for prognostication in locally advanced nasopharyngeal carcinoma (LA-NPC). METHODS: A total of 910 histologically proven LA-NPC undergoing radical IC + concurrent chemo-radiotherapy (CCRT) or targeted radiotherapy (CTRT) or both (CTCRT) were involved. The concentration of cfEBV DNA was measured by quantitative polymerase chain reaction pre-IC (cfEBV DNApreIC) and at IC completion. CfEBV DNApostIC was classified as undetectable (0 copy/ml) and detectable (>0 copy/ml). Recursive partitioning analysis (RPA) with respect to the overall survival (OS) was applied to construct a risk stratification system incorporating cfEBV DNApostIC and critical risk factors. RESULTS: We observed that 660 (72.5%) and 250 (27.5%) patients had cfEBV DNApostIC undetectable and detectable respectively. CfEBV DNApostIC positive was associated with a significant inferior 5-year OS (76.2% versus 85.9%), metastasis-free survival (DMFS, 71.7% versus 86.4%) and disease-free survival (DFS, 57.7% versus 80.1%) than cfEBV DNApostIC negative (P < 0.001 for all). Additionally, cfEBV DNApostIC was independently significant for OS (hazard ratio [HR] 1.90, 95% CI 1.40-2.59), DMFS (1.99, 1.45-2.71) and DFS (2.38, 1.86-3.06) in multivariate analyses (P < 0.001 for all). RPA modelling yielded three distinct risk groups: low-risk (N0-1 and undetectable cfEBV DNApostIC or N2-3 and pre-treatment cfEBV DNA [cfEBV DNApreIC] <7000), median-risk (N0-1 and detectable cfEBV DNApostIC or N2-3 and cfEBV DNApreIC ≥7000 with undetectable cfEBV DNApostIC) and high-risk (N2-3 and cfEBV DNApreIC ≥7000 with detectable cfEBV DNApostIC), with 5-year OS of 88.1%, 79.2% and 66.9%, respectively. Our risk stratification outperformed TNM classification for predicting death (AUC, 0.631 versus 0.562; P = 0.012) and distant metastasis (0.659 versus 0.562; P = 0.004). CONCLUSIONS: CfEBV DNApostIC represents an effective indicator of prognostication in LA-NPC. We developed a risk classification system that provides improved OS prediction over the current staging system by combining cfEBV DNApostIC, cfEBV DNApreIC and N-stage classification in LA-NPC.

6.
Respir Physiol Neurobiol ; 291: 103692, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34020067

RESUMO

BACKGROUND: A fall of ≥ 20 % in forced expiratory volume in the first second (FEV1) with a cumulative dose of histamine ≤ 7.8 µmol is considered to indicate bronchial hyperactivity, but no method exists for patients who cannot perform spirometry properly. Here we hypothesized that increases in respiratory central output measured by chest wall electromyography of the diaphragm (EMGdi-c) expressed as a function of tidal volume (EMGdi-c/VT) would have discriminative power to detect a 'positive' challenge test. METHODS: In a physiological study EMGdi was recorded from esophageal electrode (EMGdi-e) in 16 asthma patients and 16 healthy subjects during a histamine challenge test. In a second study, EMGdi from chest wall surface electrodes (EMGdi-c) was measured during a histamine challenge in 44 asthma patients and 51 healthy subjects. VT was recorded from a digital flowmeter during both studies. RESULTS: With histamine challenge test the change in EMGdi-e/VT in patients with asthma was significantly higher than that in healthy subjects (104.2 % ± 48.6 % vs 0.03 % ± 17.1 %, p < 0.001). Similarly there was a significant difference in the change of EMGdi-c/VT between patients with asthma and healthy subjects (90.5 % ± 75.5 % vs 2.4 % ± 21.7 %, p < 0.001). At the optimal cut-off point (29 % increase in EMGdi-c/VT), the area under the ROC curve (AUC) for detection of a positive test was 0.91 (p < 0.001) with sensitivity 86 % and specificity 92 %. CONCLUSIONS: We conclude that EMGdi-c/VT may be used as an alternative for the assessment of bronchial hypersensitivity and airway reversibility to differentiate patients with asthma from healthy subjects.

7.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33969828

RESUMO

Gene therapy is considered a potential treatment for Duchenne muscular dystrophy (DMD). Researchers have been working on this for many years to find effective therapeutic targets. Here, we found that MRTF-A (myocardin-related transcription factor A) could activate the transcription of L-type Ca2+-channel-related protein CACNA1S (calcium voltage-gated channel subunit alpha1 S) by binding to the CarG box in the promoter of CACNA1S. However, increased phosphorylation and decreased expression of MRTF-A were observed, along with the expression of CACNA1S reduced in mdx mice. Further, the decreased expression and increased phosphorylation of MRTF-A could inhibit the release of Ca2+ via CACNA1S. Therefore, MRTF-A may be a potential molecular target for the diagnosis and treatment of DMD.

8.
Front Immunol ; 12: 641378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953714

RESUMO

Background: Inadequate tuberculosis (TB) diagnostics, especially for discrimination between active TB (ATB) and latent TB infection (LTBI), are major hurdle in the reduction of the disease burden. The present study aims to investigate the role of lymphocyte non-specific function detection for TB diagnosis in clinical practice. Methods: A total of 208 participants including 49 ATB patients, 64 LTBI individuals, and 95 healthy controls were recruited at Tongji hospital from January 2019 to October 2020. All subjects were tested with lymphocyte non-specific function detection and T-SPOT assay. Results: Significantly positive correlation existed between lymphocyte non-specific function and phytohemagglutinin (PHA) spot number. CD4+ T cell non-specific function showed the potential for differentiating patients with negative T-SPOT results from those with positive T-SPOT results with an area under the curve (AUC) of 0.732 (95% CI, 0.572-0.893). The non-specific function of CD4+ T cells, CD8+ T cells, and NK cells was found significantly lower in ATB patients than in LTBI individuals. The AUCs presented by CD4+ T cell non-specific function, CD8+ T cell non-specific function, and NK cell non-specific function for discriminating ATB patients from LTBI individuals were 0.845 (95% CI, 0.767-0.925), 0.770 (95% CI, 0.683-0.857), and 0.691 (95% CI, 0.593-0.789), respectively. Application of multivariable logistic regression resulted in the combination of CD4+ T cell non-specific function, NK cell non-specific function, and culture filtrate protein-10 (CFP-10) spot number as the optimally diagnostic model for differentiating ATB from LTBI. The AUC of the model in distinguishing between ATB and LTBI was 0.939 (95% CI, 0.898-0.981). The sensitivity and specificity were 83.67% (95% CI, 70.96%-91.49%) and 90.63% (95% CI, 81.02%-95.63%) with the threshold as 0.57. Our established model showed superior performance to TB-specific antigen (TBAg)/PHA ratio in stratifying TB infection status. Conclusions: Lymphocyte non-specific function detection offers an attractive alternative to facilitate TB diagnosis. The three-index diagnostic model was proved to be a potent tool for the identification of different events involved in TB infection, which is helpful for the treatment and management of patients.

9.
Ren Fail ; 43(1): 781-795, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33941037

RESUMO

BACKGROUND: Tremendous scientific researches have been conducted in the field of diabetic kidney disease (DKD), while few bibliometric analyses have been performed. We aim to identify 100 top-cited published articles about DKD and analyze their main characteristics quantitatively. METHODS: Web of Science was searched with the term 'diabetic kidney disease' OR 'diabetic nephropathy' to identify the top 100 most cited articles. For articles meeting the predefined criteria, the following data were extracted and analyzed: citation ranking, publication year, publication journal, journal impact factor, country and institution, authors, study type, and keywords. RESULTS: The highest number of citations was 4753 times. The median average citations per year was 21.8 (IQR, 16.6-33.0). Most articles focused on the pathogenesis and treatment. These articles were published in 25 different journals and the Journal of the American Society of Nephrology published the greatest number (20%). Forty-three articles (43%) originated from the United States. The University of Groningen was the leading institute, contributing five top-cited articles. The most frequent first author was de Zeeuw (n = 4), followed by Parving (n = 3). There was no correlation between the average citations and the number of authors, the number of institutes, or the number of funds, respectively. Experimental animal study was the research type most frequently conducted (n = 30), followed by observational study (n = 24). Keyword analysis revealed transforming growth factor-ß, oxidative stress, proteinuria, and renin-angiotensin-aldosterone system interruption are classic research topics. Sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 receptor agonists, and anti-inflammatory agents are the emerging trends of DKD. CONCLUSIONS: This bibliometric analysis helps in identifying the milestones, inadequacies, classic hotspots, and emerging trends of DKD. Pathogenesis and treatment are core themes in DKD research, while high-quality articles on the prediction and biomarker are insufficient. New analyzing metrics are needed to assess the actual impact of these top-cited articles on clinical practice.

10.
Exp Neurol ; 342: 113759, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33992580

RESUMO

Zinc and ring finger 2 (ZNRF2), an E3 ubiquitin ligase, plays a crucial role in many diseases. However, its role in cerebral ischemia/reperfusion injury (CIRI) still remains unknown. In this study, the function and molecular mechanism of ZNRF2 in CIRI in vivo and vitro was studied. ZNRF2 was found to be dramatically downregulated in CIRI. Overexpression of ZNRF2 could significantly reduce the neurological deficit, brain infarct volume and histopathological damage of cortex in middle cerebral artery occlusion/reperfusion. Concomitantly, overexpression of ZNRF2 increased the primary neuronal viability and decreased the neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Mechanistically, overexpression of ZNRF2 inhibited the over-induction of autophagy induced by OGD/R which was abolished by mTORC1 inhibitor rapamycin. It can be concluded that ZNRF2 plays a protective effect in CIRI and the underlying mechanism may be related to the inhibition of mTORC1-mediated autophagy.

12.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33980490

RESUMO

Designing scaffolds capable of inducing and guiding appropriate immune responses holds promise for tissue repair/regeneration. Biofunctional scaffolds were here prepared by immobilizing mesenchymal stromal exosomes onto fibrous polyester materials and allowed cell-mediated delivery of membrane-bound vesicles. Quantitative cell-level analyses revealed that immune cells dominated the uptake of exosomes from scaffolds in vivo, with materials and exosomes acting as the recruiter and trainer for immune cells, respectively, to synergistically promote beneficial macrophage and regulatory T cell responses in skin wounds in mice. Adaptive T helper cell responses were found active in remote immune organs, and exosome-laden scaffolds facilitated tissue repair in large skin injury models. This study demonstrated important mechanisms involved in local and systemic immune responses to biological implants, and understanding tissue-reparative immunomodulation may guide the design of new biofunctional scaffolds.

13.
Int J Immunopathol Pharmacol ; 35: 20587384211016131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024178

RESUMO

Dysregulation of microRNA-425 (miR-425) has been reported in several human cancers. However, the role of miR-425 in human cervical cancer via modulation of RAB2B expression is still unclear. This study was therefore designed to examine the expression and decipher the role of miR-425 in cervical cancer. The qRT-PCR was used for expression analysis. MTT and EdU assays were used for the determination of cell viability and proliferation, respectively. Annexin V/PI staining was used to detect apoptosis. Wound healing and transwell assays were used to monitor cell migration and invasion. Western blotting was used for protein expression analysis. The in vivo study was performed in xenografted mice model. The results of the present study revealed miR-425 to be significantly (P = 0.032) down-regulated in cervical cancer tissues and cell lines. Additionally, low expression of miR-425 was associated with significantly (P = 0.035) lower survival rate of the cervical cancer patients. Overexpression of miR-425 resulted in significant (P = 0.024) decline of cervical cancer cell proliferation via induction of apoptosis. The induction of apoptosis was associated with up-regulation of Bax and down-regulation of Bcl-2. Besides, the migration and invasion of cancer cells significantly (P < 0.01) decreased under miR-425 overexpression. Additionally, miR-425 could inhibit the growth of xenografted tumors in vivo. In silico analysis and dual luciferase assay revealed RAB2B as the direct target of miR-425 in cervical cancer. RAB2B was found to be significantly (P < 0.05) up-regulated in cervical cancer tissues and cell lines and miR-425 overexpression suppressed the expression of RAB2B. Additionally, silencing of RAB2B could suppress the growth of cervical cancer cells but its overexpression could rescue the tumor-suppressive effects of miR-425. Taken together, the results revealed the tumor-suppressive roe of miR-425 and point towards its therapeutic potential in the management of cervical cancer.

14.
Food Funct ; 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34018492

RESUMO

Diets of overloaded purine-rich foods for a long time are one of the important reasons to cause renal lesions. Eucommia ulmoides is one of the traditional Chinese medicine herbs, which has been used to recover functions of the kidney. However, its mechanism remains unclear. The aim of this study was to explore the effects and protective mechanism of Eucommia ulmoides extract on renal injury caused by long-term high purine diets in rats. SD rats underwent an intragastric adenine (200 mg kg-1 d-1) administration for 9 weeks and were treated for 15 weeks. The results demonstrated that Eucommia ulmoides extract significantly reduced serum Cre and BUN levels in rats. H&E and Masson's trichrome stains showed notable lowering of the infiltration of inflammatory cells, the formation of fibrous tissues and collagen fibers, and improvement in the pathological morphology of kidneys. It also suppressed the protein and mRNA expressions of TGF-ß1 and α-SMA and enhanced E-cadherin expression. Meanwhile, Eucommia ulmoides extract prominently inhibited the mRNA expression of Col I, Col III, Col IV, TIMP-1, and TIMP-2 and promoted expressions of MMP-1, MMP-2 and MMP-9. Through our study, it is the first time to prove that Eucommia ulmoides extract could ameliorate renal interstitial fibrosis and may involve in the regulation of the extracellular matrix (ECM) degradation enzyme (MMPs/TIMPs) system, promotion of the expression of E-cadherin, and suppression of expressions of TGF-ß1 and α-SMA. The results provide a significant implication for the utilization of Eunomia Ulmoides extract as functional foods to enhance renal functions and improve renal injury caused by high purine diets.

15.
Tissue Cell ; 72: 101554, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33991763

RESUMO

Cellular senescence has become a research focus because of its dual roles in ageing and tumorigenesis. The biomarkers of senescence are essential for detecting senescent cells and understanding the ageing process and its regulation. Here, we identify cytosolic double-stranded DNA (dsDNA) as a novel sensitive biomarker for cellular senescence of mouse embryonic fibroblasts (MEFs) in response to common types of stimuli, including replicative stress, genetic modification and oxidative stress. We found that the accumulation of cytosolic dsDNA was positively correlated with the senescence process in MEFs and was detectable earlier than senescence-associated ß-galactosidase (SA-ß-Gal) staining, which is the current gold standard for senescence detection. Due to the immunogenicity of dsDNA, we further investigated the stimulation of two dsDNA sensors, cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS) and absent in melanoma-2 (AIM2). The results showed that the cGAS protein level did not significantly change upon senescence stimulation, while AIM2 expression was significantly upregulated in senescent cells. Surprisingly, we found that ageing-related cytosolic dsDNA induced significant pyroptosis activation in the senescent MEFs. These data reveal novel easy-to-detect biomarker for cellular senescence. The activation of downstream immunological response pathways might add new experimental evidence for inflammatory ageing.

16.
Front Immunol ; 12: 652383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912176

RESUMO

Background: Pneumocystis jiroveci pneumonia (PJP) is the most common opportunistic infection in immunocompromised patients. The accurate prediction of PJP development in patients undergoing immunosuppressive therapy remains challenge. Methods: Patients undergoing immunosuppressive treatment and with confirmed pneumocystis jiroveci infection were enrolled. Another group of matched patients with immunosuppressant treatment but without signs of infectious diseases were enrolled to control group. Results: A total of 80 (40 PJP, 40 non-PJP) participants were enrolled from Tongji Hospital. None of the patients were HIV positive. The routine laboratory indicators, such as LYM, MON, RBC, TP, and ALB, were significantly lower in PJP patients than in non-PJP patients. Conversely, LDH in PJP patients was significantly higher than in non-PJP controls. For immunological indicators, the numbers of T, B, and NK cells were all remarkably lower in PJP patients than in non-PJP controls, whereas the functional markers such as HLA-DR, CD45RO and CD28 expressed on CD4+ or CD8+ T cells had no statistical difference between these two groups. Cluster analysis showing that decrease of host immunity markers including CD3+, CD4+ and CD8+ T cells, and increase of tissue damage marker LDH were the most typical characteristics of PJP patients. A further established model based on combination of CD8+ T cells and LDH showed prominent value in distinguishing PJP from non-PJP, with AUC of 0.941 (95% CI, 0.892-0.990). Conclusions: A model based on combination of routine laboratory and immunological indicators shows prominent value for predicting the development of PJP in HIV-negative patients undergoing immunosuppressive therapy.

17.
Front Immunol ; 12: 653198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912178

RESUMO

Interleukin (IL)-35-secreting B (IL-35+B) cells are critical regulators in autoimmune and infectious diseases and exert suppressive functions in parallel with IL-10-producing B (B10) cells. However, the role of IL-35+B cells in persistent hepatitis B virus (HBV) infection remains unclear. To elucidate the role of IL-35+B cells in the progress of chronic HBV infection, we determined the frequency of IL-35+B cells and their relationship with the classical human regulatory B cell (Breg) subsets, namely, CD19+CD24hiCD38hi and CD19+CD24hiCD27+. Then, the regulatory effect and mechanism of Bregs on effector T cells were investigated in vitro. Here, we found that compared with healthy controls, the frequency of IL-35+B cells was increased in patients with chronic HBV infection and was enriched in human classical Breg subset CD19+CD24hiCD38hi B cells. Moderate correlation was observed between the frequency of IL-35+B cells and alanine aminotransferase levels (Spearman r = 0.401), but only mild correlation was noted between the frequency of IL-35+B cells and HBV DNA level (Spearman r = 0.314). The frequency of IL-35+B cells was negatively correlated with interferon-γ (IFN-γ)-producing CD4+ and CD8+ cells but positively correlated with IL-4-producing T cells. Bregs dysregulated T cell function through an IL-35-dependent mechanism and depended on cell-to-cell contact. In conclusion, IL-35+ B cell was enriched in CD19+CD24hiCD38hi B cell subset during persistent HBV infection and Breg cells exerted dysregulation in T cell function through IL-35 dependent mechanism and depend on cell-to-cell contact. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03734783.

18.
Genome ; 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33901411

RESUMO

MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs that play important roles in abiotic stress responses in plants. but their regulatory roles in the adaptive response to heat stress at the booting stage in two rice varieties 9311 and Nagina 22, remain largely unknown. In this study, 464 known miRNAs and 123 potential novel miRNAs were identified. Of these miRNAs, a total of 90 differential expressed miRNAs were obtained with 9311 libraries as control group, of which 54 upregulated and 36 downregulated miRNAs. To gain insight into functional significance, 2773 potential target genes of these 90 differentially expressed miRNAs were predicted. GO enrichment showed that the predicted target genes of differentially expressed miRNAs including NACs, LACs, CSD, and Hsp40. KEGG pathway analysis showed that target genes of these differentially expressed miRNAs were significantly enriched in plant hormone signal transduction pathway. The expression levels of ten differentially expressed miRNAs and their target genes obtained by qRT-PCR were largely consistent with the sequencing results. This study lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in rice at elevated temperatures. Key words: rice, heat-responsive, microRNA, target gene, booting stage, high-throughput sequencing.

19.
Immunology ; 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33930194

RESUMO

Mycoplasmas are the smallest and simplest bacteria that lack a cell wall but have the capability of self-replication. Among them, Mycoplasma pneumoniae is one of the most common causes of community-acquired pneumonia. The hallmark of mycoplasma respiratory diseases is the persistence of lung inflammation that involves both innate and adaptive immune responses. In recent years, a growing body of evidence demonstrates that IL-17 plays an important role in respiratory mycoplasma infection, and associates with the pathologic outcomes of infection, such as pneumonitis and asthma. Numerous studies have shown that a variety of cells, in particular Th17 cells, in the lung can secrete IL-17 during respiratory mycoplasma infection. In this article, we review the biological functions of distinct IL-17-producing cells in mycoplasma respiratory infection with a focus on the effect of IL-17 on the outcomes of infection.

20.
Mater Sci Eng C Mater Biol Appl ; 123: 111953, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812581

RESUMO

Resveratrol (RES) is a plant extract with excellent antioxidant, biocompatibility, anti-inflammatory and inhibition of platelet aggregation. RES-modified polysulfone (PSF) hemodialysis membranes have been fabricated using an immersion phase transformation method. The antioxidant properties of the blend membranes were evaluated in terms of their 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS+), reactive oxygen species (ROS) free radicals scavenging, total antioxidant capacity (T-AOC) of serum and lipid peroxidation inhibition. The observed results of decreasing DPPH and ABTS+ levels, scavenging ROS, significant inhibition of lipid peroxidation and improving the T-AOC of serum all contribute to the recovery of oxidative balance and the use of RES as an antioxidant modifier. The antioxidant stability of PSF/RES blend membranes was also studied. Moreover, the results of blood compatibility experiments showed that the addition of RES improved the blood compatibility of PSF membrane, inhibited the adhesion of red blood cells and platelets; inhibited complement activation; and reduced the blood cells deformation rate. The dialysis simulation experiment indicated that PSF/RES membrane (M-3) can clear 90.33% urea, 89.50% creatinine, 74.60% lysozyme and retention 90.47% BSA. All these results showed the new PSF/RES blend membranes have potential to be used in the field of hemodialysis to improve oxidative stress status in patients.


Assuntos
Antioxidantes , Diálise Renal , Antioxidantes/farmacologia , Humanos , Membranas Artificiais , Estresse Oxidativo , Polímeros , Resveratrol/farmacologia , Sulfonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...