Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 89: 101671, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672230

RESUMO

Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.


Assuntos
Intoxicação por Ciguatera , Dinoflagelados , Alga Marinha , Animais , Ecossistema , Filogenia
2.
Harmful Algae ; 88: 101610, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31582156

RESUMO

The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.


Assuntos
Dinoflagelados , Toxinas Marinhas , Regiões Árticas , Teorema de Bayes , Chile , Cromatografia Líquida , Mar Mediterrâneo , Nova Zelândia , Espectrometria de Massas em Tandem
3.
Harmful Algae ; 83: 95-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31097256

RESUMO

Thirteen isolates of Prorocentrum species were established from the coral reefs of Perhentian Islands Marine Park, Malaysia and underwent morphological observations and molecular characterization. Six species were found: P. caipirignum, P. concavum, P. cf. emarginatum, P. lima, P. mexicanum and a new morphotype, herein designated as P. malayense sp. nov. Prorocentrum malayense, a species closely related to P. leve, P. cf. foraminosum, P. sp. aff. foraminossum, and P. concavum (Clade A sensu Chomérat et al. 2018), is distinguished from its congeners as having larger thecal pore size and a more deeply excavated V-shaped periflagellar area. Platelet arrangement in the periflagellar area of P. malayense is unique, with the presence of platelet 1a and 1b, platelet 2 being the most anterior platelet, and a broad calabash-shaped platelet 3. The species exhibits consistent genetic sequence divergences for the nuclear-encoded large subunit ribosomal RNA gene (LSU rDNA) and the second internal transcribed spacer (ITS2). The phylogenetic inferences further confirmed that it represents an independent lineage, closely related to species in Clade A sensu Chomérat et al. Pairwise comparison of ITS2 transcripts with its closest relatives revealed the presence of compensatory base changes (CBCs). Toxicity analysis showed detectable levels of okadaic acid in P. lima (1.0-1.6 pg cell-1) and P. caipirignum (3.1 pg cell-1); this is the first report of toxigenic P. caipirignum in the Southeast Asian region. Other Prorocentrum species tested, including the new species, however, were below the detection limit.


Assuntos
Dinoflagelados , DNA Ribossômico , Ilhas , Malásia , Filogenia
4.
Harmful Algae ; 78: 75-85, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196927

RESUMO

The marine dinoflagellate Azadinium poporum produce azaspiracids (AZA) and has been recorded widely in the world. However, information on its biogeography is still limited, especially in view of the fact that A. poporum comprises several genetically differentiated groups. A total of 18 strains of A. poporum were obtained from the Eastern Mediterranean area by incubating surface sediment collected from Ionian Sea of Greece. The morphology of these strains was examined with light microscopy and scanning electron microscopy. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from all cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences confirmed three ribotypes within A. poporum and revealed two subclades within ribotypes A and C. Greek strains of A. poporum ribotype A were nested within ribotype A2 together with strains from Western Mediterranean Sea and French Atlantic, and Greek strains of A. poporum ribotype C were nested within ribotype C2 together with a strain from the Gulf of Mexico. Growth experiments on four selected strains revealed that ribotypes A and C from Greece differed in their growth at higher temperatures, indicating that they are physiologically differentiated. Azaspiracid profiles were analyzed for 15 cultured A. poporum strains using LCMS/MS and demonstrate that the A. poporum ribotype A from Greece produce low level or no AZA and A. poporum ribotype C from Greece produces predominantly AZA-40 (9.6-30.2 fg cell-1) followed by AZA-2 (2.1-2.6 fg cell-1). The first record of AZA-40 producing A. poporum from the Mediterranean suggests that this species is a potential source for azaspiracid contaminations in shellfish from the Eastern Mediterranean Sea.


Assuntos
Dinoflagelados/fisiologia , Furanos/análise , Toxinas Marinhas/análise , Piranos/análise , Compostos de Espiro/análise , Cromatografia Líquida , Dinoflagelados/química , Grécia , Mar Mediterrâneo , Ribotipagem , Simpatria/fisiologia , Espectrometria de Massas em Tandem
5.
J Phycol ; 54(5): 744-761, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144373

RESUMO

The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium-like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop-shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.


Assuntos
Dinoflagelados/citologia , Dinoflagelados/genética , Filogenia , China , Cloroplastos/ultraestrutura , DNA de Algas/análise , DNA de Protozoário/análise , DNA Ribossômico/análise , Dinoflagelados/classificação , Dinoflagelados/ultraestrutura , França , Malásia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
6.
Harmful Algae ; 67: 107-118, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28755713

RESUMO

Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.


Assuntos
Ciguatoxinas/toxicidade , Dinoflagelados/classificação , Filogenia , Filogeografia , Sequência de Bases , Tamanho Celular , DNA Ribossômico/química , DNA Ribossômico/genética , Dinoflagelados/citologia , Dinoflagelados/ultraestrutura , Funções Verossimilhança , Conformação de Ácido Nucleico
7.
Harmful Algae ; 66: 65-78, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602255

RESUMO

The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4', 2a, 6'', 6C, 5S, 6''', 2'''', by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC-MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44fgcell-1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.


Assuntos
Dinoflagelados/classificação , Dinoflagelados/genética , Proliferação Nociva de Algas , Toxinas Marinhas/análise , Compostos de Espiro/análise , Oceano Atlântico , China , Cromatografia Líquida , DNA de Algas/análise , DNA Intergênico/análise , DNA Ribossômico/análise , Dinoflagelados/química , França , Mar Mediterrâneo , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas em Tandem
8.
Harmful Algae ; 66: 88-96, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602257

RESUMO

Blooms of the harmful dinoflagellate Akashiwo sanguinea are responsible for the mass mortality of fish and invertebrates in coastal waters. This cosmopolitan species includes several genetically differentiated clades. Four clonal cultures were established by isolating single cells from Xiamen Harbour (the East China Sea) for morphological and genetic analyses. The cultures displayed identical morphology but were genetically different, thus revealing presence of cryptic diversity in the study area. New details of the apical structure complex of Akashiwo sanguinea were also found. To investigate whether the observed cryptic diversity was related to environmental differentiation, 634 cells were obtained from seasonal water samples collected from 2008 to 2012. These cells were sequenced by single-cell PCR. For comparison with Chinese material, additional large subunit ribosomal DNA sequences were obtained for three established strains from Malaysian and French waters. To examine potential ecological differentiation of the distinct genotypes, growth responses of the studied strains were tested under laboratory conditions at temperatures of 12°C to 33°C. These experiments showed four distinct ribotypes of A. sanguinea globally, with the ribotypes A and B co-occuring in Xiamen Harbour. Ribotype A of A. sanguinea was present year-round in Xiamen Harbour, but it only bloomed in the winter and spring, thus corresponding to the winter type. In contrast, A. sanguinea ribotype B bloomed only in the summer, corresponding to the summer type. This differentiation supports the temperature optimum conditions that were established for these two ribotypes in the laboratory. Ribotype A grew better at lower temperatures compared to ribotype B which preferred higher temperatures. These findings support the idea that various ribotypes of A. sanguinea correspond to distinct ecotypes and allopatric speciation occurred in different climatic regions followed by dispersal.


Assuntos
Dinoflagelados/citologia , Dinoflagelados/fisiologia , Ecossistema , China , DNA de Algas/análise , DNA de Protozoário/análise , Dinoflagelados/genética , Dinoflagelados/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Filogenia , Ribotipagem , Água do Mar/parasitologia , Análise de Sequência de DNA
9.
Harmful Algae ; 55: 56-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073547

RESUMO

Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC-MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.


Assuntos
Dinoflagelados , Toxinas Marinhas/química , Filogenia , Compostos de Espiro/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Dinoflagelados/química , Dinoflagelados/classificação , Dinoflagelados/citologia , Dinoflagelados/genética , Golfo do México , Análise de Sequência de DNA
10.
J Phycol ; 51(5): 990-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26986893

RESUMO

In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf-cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf-cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter-specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum-likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium.

11.
Mar Pollut Bull ; 89(1-2): 209-219, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25444620

RESUMO

To explore the genetic diversity and paralytic shellfish poisoning (PSP) toxin profile of the Alexandrium tamarense species complex along the coast of China, 67 strains of A. tamarense from the China Sea were collected and genetic diversity were analyzed based on the rDNA sequences. In addition, PSP toxin compositions and contents were detected by HPLC. According to the 5.8S rDNA and ITS, and LSU rDNA D1-D2 sequence, A. tamarense in the China Sea comprises at least Group IV and Group I ribotypes. In these Chinese strains, the toxins with the highest concentration in the profile were C1/2, gonyautoxins 1/4 (GTX1/4) and neosaxitoxin (NEO). However, the toxin profiles were atypical and C1/2 toxins were not detected in some strains. No strict correlation was observed between the PSP toxins profile and the geographical distribution.


Assuntos
Dinoflagelados/classificação , Dinoflagelados/genética , Filogenia , China , Cromatografia Líquida de Alta Pressão , DNA Ribossômico , Dinoflagelados/patogenicidade , Variação Genética , Genética Populacional , Humanos , Saxitoxina/análogos & derivados , Saxitoxina/análise , Intoxicação por Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA