Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 698: 133960, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493573

RESUMO

Disentangling the processes that drive plant community assembly is critical for understanding the patterns of plant diversity. We studied how different abiotic and biotic factors shape the interplay between the facets of alpine plant diversity, functional (FD), phylogenetic (PD) and taxonomic diversity (TD), in three different mountain ranges with contrasting evolutionary histories and climate conditions (Pyrenees and Mediterranean-type mountains in central Spain and Chilean Andes). We hypothesized that the causal links vary in strength and sign across regions. We used species inventories, functional trait data, and a phylogeny from 84 plant communities spread throughout three high-mountain alpine grasslands. Structural equation models were used to test our causal hypotheses on the relationships observed between the three diversity facets, and the abiotic (elevation, potential solar radiation and soil total nitrogen) and biotic factors (C-score). Despite our causal model presented a high variability in each mountain range, TD always decreased with increasing elevation (sum of direct and indirect effects). We also found some patterns suggesting that assembly processes could be climatically/biogeographically structured such as the negative relationship between FD and elevation found in Mediterranean mountains and the negative relationship between FD and TD found in both Spanish mountain ranges (independently of their different climates). A remarkable finding of this study is that ecological factors such as soil total nitrogen and elevation indirectly alter the relationships between the diversity facets. Our results suggest that diversity facets are simultaneously affected by different ecological and biogeographical/evolutionary processes, resulting in some general trends but also in parallel idiosyncratic patterns. Our findings highlight that although FD stand out by its explanatory power of community processes, TD and PD provide a complementary and necessary view that should not be disregarded in the attempt to globally explain community assembly processes.


Assuntos
Biodiversidade , Clima , Filogenia , Altitude , Chile , Mudança Climática , Ecologia , Monitoramento Ambiental , Plantas , Solo , Espanha
2.
Data Brief ; 27: 104816, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788524

RESUMO

Vegetation above treeline constitutes one of the most vulnerable ecosystems to climate warming and other drivers of Global Change. Given the panorama of such an uncertain future facing these plant communities, it is critical to know how they respond to environmental changes and improve the knowledge on the potential impacts of climate change on their distribution. Recently, with the impressive development of trait-based approaches, relevant progress has been made to better understand the relationships between environmental conditions and plant communities. In this data paper, we describe data on abundances of 327 alpine plant species across 430 subplots of 2.4 m × 2.4 m in three mountain ranges (Sierra de Guadarrama and Pyrenees in Spain, and the Central Andes in Chile). We provide data on different environmental variables that represent variation in abiotic conditions and operate at different spatial scales (e.g., climatic, topographic and soil conditions). Data on six plant functional traits are also shown, which were measured on ten individuals of each species, following standard protocols. We provided the dataset as tables in the supplementary material. This information could be used to analyse the relationship between the alpine vegetation and changes in environmental conditions, and ultimately, to understand ecosystem functioning and guide conservation strategies of theses threatened and valuable ecosystems.

3.
Ann Bot ; 121(2): 335-344, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300824

RESUMO

Background and Aims: In Mediterranean annual plants, germination mainly occurs during the autumn and only those seedlings that survive winter freezing can flower and produce seedlings in spring. Surprisingly, the effect of freezing events as an abiotic determinant of these communities remains unexplored. The present study aimed to investigate how freezing events affect annual Mediterranean communities and whether their functional structure as related to freezing resistance is linked to the main biotic and abiotic determinants of these communities. Methods: In 120 plots located on a semi-arid Mediterranean steppe (Spain), the community functional structure related to the lethal temperature causing 50 % frost damage (LT50 trait) in seedlings was estimated and summarized as the community-weighted mean (CWM-LT50) and its functional diversity (FD-LT50). Plots were stratified according to distance to rabbit shelters and latrines as a proxy for rabbit density, proximity to Stipa tenacissima and spring water availability, where annual species abundance was recorded in all plots over three consecutive years. Key Results: Annual species were able to resist a threshold temperature of -4 °C and most had LT50 values around the absolute minimum temperature (-9.5 °C) in the three years. Higher rabbit densities led to lower CWM-LT50 and higher FD-LT50 values. Plots close to Stipa tussocks had higher CWM-LT50 values whereas water availability had no effects. Conclusions: High freezing resistance was extended among winter annual species, suggesting the presence of an association between historical environmental filtering and low winter temperatures. However, the community functional structure related to freezing resistance remained variable among scenarios with differences in herbivory pressure and distance to perennial vegetation. The trends observed indicate that traits that allow plants to deal with herbivory may also promote freezing resistance, and that tussocks can act as nurses via microclimatic amelioration of harsher winter conditions.


Assuntos
Magnoliopsida/fisiologia , Animais , Ecossistema , Congelamento , Herbivoria , Região do Mediterrâneo , Poaceae/fisiologia , Coelhos , Estações do Ano , Plântula/fisiologia
4.
Ann Bot ; 117(7): 1221-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27085181

RESUMO

BACKGROUND AND AIMS: Many studies have analysed the mechanisms that determine plant coexistence in standing vegetation, but the determinants of soil seed bank species assemblies have rarely been studied. In gypsum soil communities, aerial vegetation and seed banks are tightly connected in space and time, but the mechanisms involved in their organization may differ. The aim of this study is to understand the relative importance of biotic and abiotic factors controlling soil seed bank composition and structure. METHODS: Persistent and complete (i.e. persistent plus transient) soil seed banks were investigated at two spatial scales in a very species-rich semi-arid community dominated by annuals. A water addition treatment equivalent to 50 % annual increase in average precipitation (abiotic factor) was applied for two consecutive years, and the relationships of the soil seed bank to the biological soil crust (BSC), above-ground vegetation and the presence of Stipa tenacissima tussocks (biotic factors) were simultaneously evaluated. KEY RESULTS: As expected, the standing vegetation was tightly related to seed abundance, species richness and composition in both seed banks. Remarkably, BSC cover was linked to a decrease in seed abundance and species richness in the persistent seed bank, and it even determined complete seed bank composition at the fine spatial scale. However, this effect disappeared at coarser scales, probably because of the high spatial heterogeneity induced by BSCs. In contrast to findings on standing vegetation, Stipa and the irrigation treatment for two consecutive years had no effect on soil seed banks. CONCLUSIONS: Soil seed bank assemblies in our semi-arid plant community were the result of above-ground vegetation dynamics and of the direct filtering processes on seed fate operated by the spatially heterogeneous BSCs. Cover of BSCs was negatively correlated with seed abundance and species richness, and affected seed species composition in the soil. Changes in species composition and enrichment when the BSC cover is low suggest that BSCs promote a fine scale niche differentiation in the soil seed bank and thereby potentially enhance species coexistence and high species diversity in these communities.


Assuntos
Banco de Sementes , Solo , Irrigação Agrícola , Sulfato de Cálcio , Poaceae/fisiologia , Sementes/fisiologia , Solo/química , Espanha
5.
Biol Rev Camb Philos Soc ; 90(1): 1-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25756149

RESUMO

The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non-specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below-ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio-temporal changes in the composition and structure of above-ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run-off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short-distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.


Assuntos
Sulfato de Cálcio , Plantas/classificação , Solo/química , Adaptação Fisiológica , Desenvolvimento Vegetal , Microbiologia do Solo
6.
PLoS One ; 7(7): e41270, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848455

RESUMO

The study of species coexistence and community assembly has been a hot topic in ecology for decades. Disentangling the hierarchical role of abiotic and biotic filters is crucial to understand community assembly processes. The most critical environmental factor in semi-arid environments is known to be water availability, and perennials are usually described as nurses that create milder local conditions and expand the niche range of several species. We aimed to broaden this view by jointly evaluating how biological soil crusts (BSCs), water availability, perennial species (presence/absence of Stipa tenacissima) and plant-plant interactions shape a semi-arid annual plant community. The presence and cover of annual species was monitored during three years of contrasting climate. Water stress acted as the primary filter determining the species pool available for plant community assembly. Stipa and BSCs acted as secondary filters by modulating the effects of water availability. At extremely harsh environmental conditions, Stipa exerted a negative effect on the annual plant community, while at more benign conditions it increased annual community richness. Biological soil crusts exerted a contradictory effect depending on climate and on the presence of Stipa, favoring annuals in the most adverse conditions but showing repulsion at higher water availability conditions. Finally, interactions among co-occurring annuals shaped species richness and diversity of the final annual plant assembly. This study sheds light on the processes determining the assembly of annual communities and highlights the importance of Biological Soil Crusts and of interactions among annual plants on the final outcome of the species assembly.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Plantas
7.
Ecol Lett ; 12(9): 930-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19638041

RESUMO

The worldwide phenomenon of shrub encroachment in grass-dominated dryland ecosystems is commonly associated with desertification. Studies of the purported desertification effects associated with shrub encroachment are often restricted to relatively few study areas, and document a narrow range of possible impacts upon biota and ecosystem processes. We conducted a study in degraded Mediterranean grasslands dominated by Stipa tenacissima to simultaneously evaluate the effects of shrub encroachment on the structure and composition of multiple biotic community components, and on various indicators of ecosystem function. Shrub encroachment enhanced vascular plant richness, biomass of fungi, actinomycetes and other bacteria, and was linked with greater soil fertility and N mineralization rates. While shrub encroachment may be a widespread phenomenon in drylands, an interpretation that this is an expression of desertification is not universal. Our results suggest that shrub establishment may be an important step in the reversal of desertification processes in the Mediterranean region.


Assuntos
Clima Desértico , Ecossistema , Fenômenos Fisiológicos Vegetais , Região do Mediterrâneo , Solo/análise
8.
Ann Bot ; 99(3): 519-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17237214

RESUMO

BACKGROUND AND AIMS: Environmental variability at several scales can determine plant reproductive success. The main goal of this work was to model the reproductive flexibility of a semi-arid specialist considering different scales of environmental variability. METHODS: A 2-year field study was performed on the determinants of the female reproductive success of Helianthemum squamatum, an Iberian gypsophyte, considering two scales of environmental variability: differences between two contrasting slope aspects; and, on individual scale, the neighbouring microenvironment. Generalized linear mixed models were used to evaluate simultaneously the potential effects of environmental variability at both scales, together with flowering phenology and plant size on the reproductive output of H. squamatum. The following reproductive response variables were considered: number of flowers, fruit-set, number of viable and aborted seeds per fruit, and number of seeds per plant. KEY RESULTS: Contrary to expectations, environmental variability exerted a weak or even absent effect on the reproductive variables considered, while flowering phenology and plant size, which did not vary between slopes, played a major role. Surprisingly, the absolute reproductive variables were even higher in the extremely dry year of 2003, although only on the south-facing slope. The relatively milder conditions of the north-facing slope did not involve any advantage to this species in terms of reproductive output. CONCLUSIONS: The species seemed to be considerably well adapted to the environmental unpredictability characteristic of Mediterranean systems, considering its ability to maintain reproduction across contrasting environments and contrasting climatic conditions. These findings make us face the question of what must be considered stressful conditions in the case of a stress-tolerant specialist.


Assuntos
Aclimatação , Cistaceae/fisiologia , Meio Ambiente , Cistaceae/anatomia & histologia , Cistaceae/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Reprodução/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA