Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
mBio ; 11(3)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430465

RESUMO

Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.

3.
Bioconjug Chem ; 31(5): 1289-1294, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32223180

RESUMO

Bispecific aptamer-drug conjugates (BsApDC) may improve the efficacy of drugs by enhancing cellular internalization and targeted delivery. Nevertheless, the synthesis of single-molecular BsApDC has not yet been reported, and it could be thwarted by synthetic challenges. Herein we report a general approach to synthesize a BsApDC hybridized chemical and biological method. Primers incorporated with 5-Fluorouracil (5-FU), 10-Hydroxycamptothecin, and Maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl-monomethyl auristatin E(vcMMAE) were prepared by chemical synthesis, which were converted to corresponding ApDCs efficiently by enzymatic reaction. Biological studies revealed that BsApDC binds with target cells with enhanced internalization and better inhibitory activity, demonstrating the potential of BsApDCs for targeted tumor therapy.

4.
Immunopharmacol Immunotoxicol ; 42(3): 211-220, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253952

RESUMO

Objective: Quercetin (Que), a flavonoid, possesses anti-inflammatory and antioxidant properties. It has been shown to protect against liver injury induced by various factors. This study was designed to investigate the underlying mechanism of its protective effect against lipopolysaccharide (LPS)- induced liver damage.Methods: Mice were pretreated with Que for 7 consecutive days and then exposed to LPS. To study the hepatoprotective effect of Que, oxidative stress parameters, inflammatory cytokine levels in liver and serum liver function indexes were examined. Protein and mRNA expression of nuclear orphan receptors and cytochrome P450 enzymes were measured by Western Blotting and qPCR, respectively.Results: Que significantly reduced circulating ALT, AST, ALP, and ameliorated LPS-induced histological alterations. In addition, Que obviously decreased markers of oxidative stress and pro-inflammatory cytokines. Furthermore, Que carried out the hepatoprotective effect via regulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11).Conclusions: Our findings suggested that Que pretreatment could ameliorate LPS-induced liver injury.

5.
Anal Chem ; 92(5): 4108-4114, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32037790

RESUMO

Developing cancer targeted medicine depends on increasing delivery efficiency and tumor site accumulation of theranostic agents. To accomplish this, we report a modification of PTK7 receptor-specific aptamer Sgc8 with the small molecule Evans Blue (EB), thus implementing an albumin binding hitchhike strategy for prolonged blood circulation. The EB molecule could insert into the hydrophobic region of serum albumin and form an aptamer/albumin complex. This complex showed superior physiological stability, facilitating longer blood half-life, and maintaining its targeting capacity. Successful conjugation of EB-aptamers was confirmed by a series of characterization methods. Targeting performance was tested on a xenografted mouse tumor model. Taking advantage of the long circulating aptamer/HSA complex, improved accumulation, and delivery efficiency to the tumor site were achieved. Through ex vivo quantification of the EB-Sgc8 aptamers' biodistribution, the mechanism of improved targeting performance was illuminated. Therefore, the increased aptamers tumor delivery efficiency and accumulation indicate that prolonging blood circulation is a promising strategy to improve aptamers' targeted delivery performance in the future clinical translation.

6.
Reprod Sci ; 27(6): 1372-1381, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32006246

RESUMO

Umbilical cord mesenchymal stem cells (UCMSCs) have been proposed as an ideal source for cell-based therapy to promote endometrial repair and regeneration. Furthermore, increasing evidence has indicated that UCMSC-derived exosomes (UCMSC-exos) act as important paracrine mediators to recapitulate the features of MSCs and may play a vital role in this process. UCMSCs and human endometrial stromal cells (ESCs) were isolated and characterized. ESCs were cocultured with UCMSCs and further assessed by flow cytometry and EdU incorporation assays. UCMSC-exos were extracted by differential ultracentrifugation and identified by western blots, transmission electron microscopy, and nanoparticle tracking analysis. The internalization of UCMSC-exos by ESCs was observed under a confocal microscope. ESCs were treated with UCMSC-exos at different concentrations and for different durations, with cell viability evaluated by CCK-8 assays. The cell cycle analysis showed that the percentage of ESCs in S phase significantly increased after coculture with UCMSCs, whereas it significantly decreased after inhibition of UCMSC-exo secretions. EdU incorporation assays also showed a similar trend. The isolated UCMSC-exos had a typical cup-shaped morphology with a monolayer membrane, expressed the specific exosomal markers Alix, CD63, and TSG101 and were approximately 60 to 200 nm in diameter. The PKH26-labeled UCMSC-exos were incorporated into ESCs. Moreover, UCMSC-exos enhanced the cell growth and viability of ESCs in a dose-dependent manner, and the effects occurred in a short period of time. UCMSC-exos promote the proliferation of ESCs in a dose-dependent manner; thus, they could be used as a potential treatment to promote endometrial repair.

7.
Future Med Chem ; 12(3): 223-242, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823643

RESUMO

As a double-edged sword, autophagy in cancer cells could either suppress or promote tumorigenesis. Nowadays, more and more natural compounds with autophagy-regulating activities exhibit therapeutic effects against various cancers. N-Heterocycle derivatives plays an important role for discovery new drugs. In this review, we summarize and classify 116 N-heterocycle derivatives with autophagy-regulating activities in the past decade into 12 classes according to structure characteristics. The structural features, bioactivities, mechanism and problems faced in this field are discussed and reported for the first time. Some of these even exhibited outstanding in vivo antitumor activities, including bisaminoquinoline (3), pancratistatin (8), 10-hydroxyevodiamine (18), lycorine (28), piperine (31) and iridium (III) complex (57), which are potential drug candidates for antitumor therapy.

8.
Pharm Biol ; 58(1): 8-15, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31847682

RESUMO

Context: Resveratrol is a natural polyphenol compound. It exhibits antitumor, immunostimulatory, and antiviral activities. However, poor water solubility and structural instability limit its administration and storage.Objective: A resveratrol dry suspension (RDS) was prepared and immunomodulatory effect in immunosuppressive mice induced by cyclophosphamide and anti-inflammatory activities in mice were evaluated.Materials and methods: The preparation of RDS was optimized by the orthogonal design method. To evaluate the immunomodulatory effects, SPF Kunming mice were divided into seven groups comprising of nine males and nine females for each group. The RDS supplemented group was administrated doses of 3.33, 1.67, and 0.83 g/kg/d. Then visceral index, lymphocyte proliferation, the ratio of CD3+ CD4+/CD3+ CD8+, and the contents of cytokines in serum were tested. To ameliorate effects of acetic acid induced capillary permeability, xylene-based ear oedema, and cotton pellet granuloma, RDS as anti-inflammatory agent was administered at doses of 1, 0.33, and 0.1 g/kg/d as compared to indomethacin (IM) provided as a positive control at 10 mg/kg.Results: RDS inhibited the degradation of resveratrol and enhanced the CD3+ CD4+/CD3+ CD8+ ratio, spleen index, IL-2 level, and splenic lymphocytes in immunosuppressive mice. RDS (0.1 g/kg/d) significantly inhibited the acetic acid-induced capillary permeability, and at doses of 0.33 and 1 g/kg/d repressed the ear swelling and granuloma formation in immunocompromised mice.Discussion and Conclusion: RDS is a stable, cheaper, and suitable preparation with potent immunoregulatory and anti-inflammatory activities. Keeping in view these remarkable properties, RDS could be an appropriate preparation for clinic use of resveratrol.

9.
Math Biosci Eng ; 17(1): 202-215, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31731347

RESUMO

Copy number variations (CNVs) play an important role in many types of cancer. With the rapid development of next generation sequencing (NGS) techniques, many methods for detecting CNVs of a single sample have emerged: (i) require genome-wide data of both case and control samples, (ii) depend on sequencing depth and GC content correction algorithm, (iii) rely on statistical models built on CNV positive and negative sample datasets. These make them costly in the data analysis and ineffective in the targeted sequencing data. In this study, we developed a novel alignment-free method called DL-CNV to call CNV from the target sequencing data of a single sample. Specifically, we collected two sets of samples. The first set consists of 1301 samples, in which 272 have CNVs in ERBB2 and the second set is composed of 1148 samples with 63 samples containing CNVs in MET. Finally, we found that a testing AUC of 0.9454 for ERBB2 and 0.9220 for MET. Furthermore, we hope to make the CNV detection could be more accurate with clinical "gold standard" (e.g. FISH) information and provide a new research direction, which can be used as the supplement to the existing NGS methods.

10.
Adv Wound Care (New Rochelle) ; 8(7): 341-354, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31737421

RESUMO

Objective: This study was aimed to evaluate the effect of tannic acid (TA), a natural plant polyphenol astringent, on wound healing in vitro and in vivo, and to elucidate the underlying molecular signaling pathway in the wound healing. Approach: Cutaneous skin wounds were created in rats and then treated until closure with purified TA, serum or tissue samples were collected to test the concentration of factors by enzyme-linked immunosorbent assay (ELISA), and the expression in gene or protein was measured by quantitative real-time polymerase chain reaction or Western blot. We explored the cell-/dose-specific responses of TA (0.1-0.4 µg/mL) on proliferation and gene and protein expression of fibroblast NIH 3T3 cells. Results: The wounds on rats treated by TA got healed faster than those in the untreated group. The histopathology study showed that TA accelerated re-epithelialization and increase in hair follicles could be detected. The levels of growth factors including basic fibroblast growth factor (bFGF), transforming growth factor-beta, and vascular endothelial growth factor in TA-treated groups were all increased, and the content of interleukin-1 (IL-1) and IL-6 was decreased significantly when compared with that of the untreated group. The NIH 3T3 cells grow faster in 6 h at concentration of 0.1 µg/mL, and the expression of bFGF in gene and protein was increased significantly in the 0.1 µg/mL TA group. Further study revealed that the protein levels of bFGF, extracellular signal regulated kinase (Erk) 1/2, and P-Erk 1/2 in Erk 1/2 pathway were increased after TA treatment. Innovation: The role of TA in wound healing efficacy is unclear; this study, therefore, assesses the effects of TA on wound healing in different periods and the underlying molecular mechanisms. Conclusion: These results suggested that TA could accelerate wound healing through modulation of inflammatory cytokines and growth factors and activate Erk 1/2 pathway. In conclusion, TA may be a potential agent in promoting wound healing.

11.
Anal Chem ; 91(21): 13818-13823, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31593429

RESUMO

Aptamer-drug conjugates (ApDCs) are emerging as targeted therapeutic drugs that can effectively broaden the chemotherapeutic window with higher efficacy and less toxicity. They show promising targeted tumor-killing effects both in vitro and in vivo. However, the mechanisms underlying the cellular internalization and transport of ApDCs remain unclear, and no systematic study on this topic has been reported. Therefore, we herein investigated the endocytic internalization and subsequent transport of ApDCs in mammalian cells through single-particle tracking. We found that ApDC enters the cells mainly by caveolin-mediated endocytosis and that it exhibits cytoskeleton-dependent transport, along microfilaments and microtubules, to acidic endosomes near the cell nucleus in cytoplasm. We also found that the cellular uptake pathways of ApDCs are identical to those of the aptamer itself, confirming that aptamers play a prominent role in the internalization of ApDCs. This study extends our understanding of the internalization and transport process of ApDCs such that the results could serve as the theoretical foundation for designing new ApDCs and, in turn, promoting cancer-targeted therapy.

12.
Molecules ; 24(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600890

RESUMO

In this study, an acidic polysaccharide from Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (WCP-I) and its main fragment, WCP-Ia, obtained after pectinase digestion, were structurally elucidated and found to consist of a rhamnogalacturonan I (RG-I) region containing both arabinogalactan type I (AG-I) and type II (AG-II) as sidechains. They both expressed immunomodulating activity against Peyer's patch cells. Endo-1,4-ß-galactanase degradation gave a decrease of interleukine 6 (IL-6) production compared with native WCP-I and WCP-Ia, but exo-α-l-arabinofuranosidase digestion showed no changes in activity. This demonstrated that the stimulation activity partly disappeared with removal of ß-d-(1→4)-galactan chains, proving that the AG-I side chain plays an important role in immunoregulation activity. WCP-Ia had a better promotion effect than WCP-I in vivo, shown through an increased spleen index, higher concentrations of IL-6, transforming growth factor-ß (TGF-ß), and tumor necrosis factor-α (TNF-α) in serum, and a slight increment in the secretory immunoglobulin A (sIgA) and CD4+/CD8+ T lymphocyte ratio. These results suggest that ß-d-(1→4)-galactan-containing chains in WCP-I play an essential role in the expression of immunomodulating activity. Combining all the results in this and previous studies, the intestinal immune system might be the target site of WCP-Ia.


Assuntos
Codonopsis/química , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Hidrólise , Imunidade nas Mucosas/efeitos dos fármacos , Fatores Imunológicos/química , Camundongos , Estrutura Molecular , Monossacarídeos/química , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Extratos Vegetais/química , Polissacarídeos/química , Análise Espectral
13.
Int Immunopharmacol ; 76: 105876, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499271

RESUMO

Resveratrol had shown various properties before, like immunomodulatory, anti-inflammatory and antiviral activities. Based on these properties, the present study was designed to evaluate the effects and mechanism of resveratrol as an immune-adjuvant for pseudorabies virus (PRV) vaccine. We found that oral administration of resveratrol to mice significantly increased the number of T lymphocytes in the spleen, and elevated the concentrations of antibodies and cytokines in the serum. Resveratrol (30 mg/kg) could enhance phagocytic capacity of peritoneal macrophage (PM) by boosting the percentage of phagocytosis, phagocytic index and the level of lysozyme. Resveratrol also enhanced antigen presentation function of PM by upregulating the expressions of CD86 and MHC-II. Further study revealed that resveratrol could increase the protein levels of TLR4, Ikk, IκBα, NF-κB and JNK when compared with non-adjuvant group. These results provide further insight into the mechanism of action in adjuvant activity of resveratrol, and also offer preclinical evidence for development as a PRV vaccine adjuvant.

14.
Biomed Pharmacother ; 118: 109340, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545284

RESUMO

It is necessary to design a reasonable drug delivery system(DDS) for targeted release to overcome the potential toxicity and poor selectivity of anti-tumor drug. How a drug is released from a DDS is a critical issue that determines whether the DDS is designed successfully. We all know that the microenvironment of tumors is quite different from normal tissues, such as its acidic environment, different expression levels of some enzymes, etc. These features are widely used in the design of DDSs and play an important role in the drug release process in vivo. Numerous DDSs have been designed and synthesized. This article attention to how drugs are released from DDSs. We summarizes and classify the characteristic enzymes and chemical bonds used in the drug release process by browsing a large number of papers, and describes how they are applied in DDSs with specific examples. By understanding these acid-sensitive chemical bonds and over-expressed enzymes in tumors, different DDSs can be designed for different drug structures to solve specific problems of anti-tumor drugs.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Hidrólise , Peptídeos/química
15.
Nano Lett ; 19(10): 7035-7042, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502461

RESUMO

Nanosized oncolytic viral light particles (L-particles), separated from progeny virions, are composed of envelopes and several tegument proteins of viruses, free of nucleocapsids. The noninfectious L-particles experience the same internalization process as mature oncolytic virions, which exhibits great potential to act as targeted therapeutic platforms. However, the clinical applications of L-particle-based theranostic platforms are rare due to the lack of effective methods to transform L-particles into nanovectors. Herein, a convenient and mild strategy has been developed to transform L-particles into near-infrared (NIR) fluorescence Ag2Se quantum dot (QD)-labeled active tumor-targeting nanovectors for real-time in situ imaging and drug delivery. Utilizing the electroporation technique, L-particles can be labeled with ultrasmall water-dispersible NIR fluorescence Ag2Se QDs with a labeling efficiency of ca. 85% and loaded with antitumor drug with a loading efficiency of ca. 87%. Meanwhile, by harnessing the infection mechanism of viruses, viral L-particles are able to recognize and enter tumor cells without further modification. In sum, a trackable and actively tumor-targeted theranostics nanovector can be obtained efficiently and simultaneously. Such multifunctional nanovectors transformed from viral L-particles have exhibited excellent properties of active tumor-targeting, in vivo tumor imaging, and antitumor efficacy, which opens a new window for the development of natural therapeutic nanoplatforms.

16.
Immunopharmacol Immunotoxicol ; 41(5): 538-548, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31549524

RESUMO

Background: The pharmacological application of kaempferol, a natural flavonol present in different plant species, has been demonstrated to have extensive anti-inflammatory, anti-apoptotic, anti-oxidative, and anti-cancer effects. Pyroptosis is an inflammatory form of programed cell death by membranolysis and associated leakage of cytoplasm. This study investigated the molecular mechanism of kaempferol-induced effects on the pyroptosis in splenic lymphocytes (SLCs) isolated from mice. Methods: Lipopolysaccharide (LPS)-primed and adenosine triphosphate (ATP)-stimulated SLCs were used to establish the pyroptosis model. The kaempferol pretreatment was tested in the model. Results: The results show that kaempferol alleviates LPS-ATP mediated damage by increasing cell viability, improving membrane integrity, and decreasing the release of IL1b and IL-18. Kaempferol reduces pyroptosis by suppressing the expression and activity of caspase-1, increasing the protein expression of Toll-like receptor 4 (TLR4) and NOD-like receptor 3 (NLRP3), and inhibition of the decomposition of gasdermin D (GSDMD). Conclusions: Our data suggest that kaempferol exhibits anti-pyroptosis activities, which warrants further detailed investigation.


Assuntos
Anti-Inflamatórios/farmacologia , Quempferóis/farmacologia , Linfócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Baço/imunologia , Trifosfato de Adenosina/imunologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/imunologia , Linfócitos/imunologia , Linfócitos/patologia , Camundongos , Piroptose/imunologia
17.
J Agric Food Chem ; 67(34): 9643-9651, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31390199

RESUMO

Licorice is a traditional Chinese medicine, which is often used as sweetener and cosmetic ingredients in food and pharmaceutical industries. Among them, glycyrrhetic acid is one of the most important agents. Studies have shown that glycyrrhetic acid exhibited antitumor activities as PPARγ agonist. However, the limited number of PPARγ glycyrrhetinic agonists and their high toxicity greatly limit the design based on the structure. Therefore, clarifying the binding mode between PPARγ and small molecules, we focused on the introduction of a natural active piperazine skeleton in the position of glycyrrhetinic acid C-3. According to the Combination Principle and the Structure-Based Drug Design, 19 glycyrrhetic acid derivatives were designed and synthesized as potential PPARγ agonists. Compounds 4c and 4q were screened as high-efficiency and low-toxicity lead compounds.


Assuntos
Antineoplásicos Fitogênicos/química , Medicamentos de Ervas Chinesas/química , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/química , PPAR gama/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Humanos , PPAR gama/metabolismo , Relação Estrutura-Atividade
18.
J Cell Biochem ; 120(12): 19422-19431, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31452264

RESUMO

Osteoporosis (OP), a common metabolic bone disease, is accompanied by reduced bone mass, bone mineral density (BMD), as well as microstructure destruction of bone. Previously, microRNA-196a-2 (miR-196a-2) and miR-196a-3p were reported for its involvement in BMD. Herein, this study set out to identify the functional relevance of miR-196a in osteogenic differentiation in osteoporotic mice and explore the associated mechanism by establishing an OP mouse model. Guanine nucleotide binding protein, alpha stimulating (GNAS) was verified as a target gene of miR-196a, which was decreased in OP mice. Furthermore, the bone marrow stromal cells (BMSCs) were then extracted from OP mice and treated with miR-196 mimic/inhibitor or small interfering RNA against GNAS to investigate miR-196a interaction with GNAS and the Hedgehog signaling pathway. BMSCs in OP mice transfected with miR-196a mimic or si-GNAS displayed the elevated expression of Smo, ALP, Runx2, and OPN, as well as bone gla protein and tartrate-resistant acid phosphatase, elevated ALP vitality and bone formation ability as well as reduced expression of GNAS and PTCH. Taken conjointly, overexpression of miR-196a repressed GNAS expression by activating the Hedgehog signaling pathway, thus promoting osteogenic differentiation in mice with OP.

19.
J Am Chem Soc ; 141(32): 12738-12743, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31328519

RESUMO

The ability to accurately identify and isolate cells is the cornerstone of precise disease diagnosis and therapies. A single-step cell identification method based on logic analysis of multiple surface markers will have unique advantages because of its accuracy and efficacy. Herein, using multiple DNA aptamers for cancer biomarker recognition and associative toehold activation for signal integration and amplification as two molecular keys, we have successfully operated a cell-surface device that can perform AND Boolean logic analysis of multiple biomarkers and precisely label the target cell subtype in large populations of similar cells via the presence or absence of different biomarkers. Our approach can achieve single-step cancer cell identification and isolation with excellent sensitivity and accuracy and thus will have broad applications in biological science, biomedical engineering, and personalized medicine.

20.
Mol Med Rep ; 20(1): 771-778, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180561

RESUMO

The aim of the present study was to evaluate the long­term effect of copper nanoparticles (CuNPs) on cytochrome P450 (CYP450) enzymes in the rat brain. Rats were repeatedly gavaged with different forms of copper sources for 28 days, and the levels of oxidative stress and CYP450 mRNA and protein expression in the rat brain were subsequently analyzed. The results demonstrated that a high dose of CuNPs (200 mg/kg) induced severe oxidative stress in the rat brain along with a decrease in the levels of total superoxide dismutase and glutathione, and an increase in hydroxyl radicals and malondialdehyde. A medium dose of CuNPs reduced CYP450 2C11 and CYP450 3A1 protein expression in the rat brain, whereas high doses of CuNPs resulted in decreased expression of most CYP450 enzyme proteins, and inhibition of pregnane X receptor and constitutive androstane receptor expression. The results suggested that CuNPs may inhibit CYP450 enzyme expression by increasing the levels of oxidative stress and decreasing the expression of nuclear receptors in the rat brain, which affects the metabolism of drugs and endogenous hormones in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Cobre/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Nanopartículas/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Cobre/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Feminino , Masculino , Nanopartículas/administração & dosagem , RNA Mensageiro/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA