Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 56(1): 69-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31789398

RESUMO

The present study aimed to evaluate the correlation of integrin α7 (ITGA7) with clinicopathological characteristics and overall survival (OS) in patients with tongue squamous cell carcinoma (TSCC), and to investigate the effect of ITGA7 knockdown on proliferation, apoptosis and stemness of TSCC cells in vitro. ITGA7 expression was measured in tumor tissues and paired adjacent normal tissues from 60 patients with TSCC using immunohistochemistry. ITGA7 expression in human TSCC cell lines and normal oral keratinocytes was measured using quantitative PCR and western blotting. Lentiviruses carrying short hairpin (sh) RNA targeting ITGA7 were used to knockdown its expression in CAL­27 and HSC­4 cells, and then proliferation, apoptosis and stemness were measured. In addition, CAL­27 and HSC­4 cancer stem cells (CSCs) were constructed and their ITGA7 expression was measured. The results demonstrated that ITGA7 was upregulated in the tumor tissues compared with the paired adjacent tissues, and its high expression was correlated with worse pathological grade, N stage, TNM stage and OS. In vitro, ITGA7 expression levels were demonstrated to be increased in the TSCC CAL­27, SCC­9, HSC­4 and SCC­25 cell lines compared to the normal HOK cell line. In CAL­27 and HSC­4 cells, ITGA7 knockdown inhibited cell proliferation, promoted apoptosis, increased CD24 expression, decreased CD44 and CD133 expression, reduced drug resistance to cisplatin and attenuated sphere formation efficiency. Finally, ITGA7 expression levels were greatly elevated in CAL­27 and HSC­4 CSCs compared with parental CAL­27 and HSC­4 cells. In conclusion, ITGA7 knockdown inhibited tumor cell proliferation and stemness in TSCC cells. These findings indicated that ITGA7 might serve as a potential marker for CSCs and may correlate with worse clinical features and prognosis in TSCC.

2.
Carbohydr Polym ; 165: 30-38, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363553

RESUMO

Sponges composed of different levels of composite collagen/oxidized microcrystalline cellulose (collagen/OMCC), denoted M1-M4, were studied to improve the hemostatic effect of single-collagen sponges. Surface morphological observations showed that structural combinations and intermolecular interactions occurred between collagen and OMCC in the composites. M2 presented the best physical properties and platelet activation and was thus selected for the investigations of the in vitro coagulation time and hemostatic and biological effects on animals. The results illustrated that M2 could reduce the length of the activated partial thromboplastin time (APTT) and thrombin time (TT) and presented rapid hemostatic efficiency in the two injury models (P<0.05). These findings were used to evaluate the hemostatic mechanism of M2, which can promote blood absorption and platelet activation and could be directly involved in the intrinsic coagulation pathway to accelerate hemostasis. Furthermore, M2 was not cytotoxic and was completely biodegraded in subcutaneous tissue within 28days.


Assuntos
Coagulação Sanguínea , Celulose/química , Colágeno/farmacologia , Hemostasia , Hemostáticos/farmacologia , Animais , Celulose Oxidada , Humanos , Tempo de Tromboplastina Parcial , Coelhos , Tempo de Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA