Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Technol Ther ; 22(3): 174-184, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31596130

RESUMO

Background: The objective of this study was to assess the safety and performance of the Omnipod® personalized model predictive control (MPC) algorithm in adults, adolescents, and children aged ≥6 years with type 1 diabetes (T1D) under free-living conditions using an investigational device. Materials and Methods: A 96-h hybrid closed-loop (HCL) study was conducted in a supervised hotel/rental home setting following a 7-day outpatient standard therapy (ST) phase. Eligible participants were aged 6-65 years with A1C <10.0% using insulin pump therapy or multiple daily injections. Meals during HCL were unrestricted, with boluses administered per usual routine. There was daily physical activity. The primary endpoints were percentage of time with sensor glucose <70 and ≥250 mg/dL. Results: Participants were 11 adults, 10 adolescents, and 15 children aged (mean ± standard deviation) 28.8 ± 7.9, 14.3 ± 1.3, and 9.9 ± 1.0 years, respectively. Percentage time ≥250 mg/dL during HCL was 4.5% ± 4.2%, 3.5% ± 5.0%, and 8.6% ± 8.8% per respective age group, a 1.6-, 3.4-, and 2.0-fold reduction compared to ST (P = 0.1, P = 0.02, and P = 0.03). Percentage time <70 mg/dL during HCL was 1.9% ± 1.3%, 2.5% ± 2.0%, and 2.2% ± 1.9%, a statistically significant decrease in adults when compared to ST (P = 0.005, P = 0.3, and P = 0.3). Percentage time 70-180 mg/dL increased during HCL compared to ST, reaching significance for adolescents and children: HCL 73.7% ± 7.5% vs. ST 68.0% ± 15.6% for adults (P = 0.08), HCL 79.0% ± 12.6% vs. ST 60.6% ± 13.4% for adolescents (P = 0.01), and HCL 69.2% ± 13.5% vs. ST 54.9% ± 12.9% for children (P = 0.003). Conclusions: The Omnipod personalized MPC algorithm was safe and performed well over 5 days and 4 nights of use by a cohort of participants ranging from youth aged ≥6 years to adults with T1D under supervised free-living conditions with challenges, including daily physical activity and unrestricted meals.

2.
J Diabetes Sci Technol ; 13(6): 1001-1007, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470740

RESUMO

BACKGROUND: We tested the safety and performance of the "insulin-only" configuration of the bionic pancreas (BP) closed-loop blood-glucose control system in a home-use setting to assess glycemic outcomes using different static and dynamic glucose set-points. METHOD: This is an open-label non-randomized study with three consecutive intervention periods. Participants had consecutive weeks of usual care followed by the insulin-only BP with (1) an individualized static set-point of 115 or 130 mg/dL and (2) a dynamic set-point that automatically varied within 110 to 130 mg/dL, depending on hypoglycemic risk. Human factors (HF) testing was conducted using validated surveys. The last five days of each study arm were used for data analysis. RESULTS: Thirteen participants were enrolled with a mean age of 28 years, mean A1c of 7.2%, and mean daily insulin dose of 0.6 U/kg (0.4-1.0 U/kg). The usual care arm had an average glucose of 145 ± 20 mg/dL, which increased in the static set-point arm (159 ± 8 mg/dL, P = .004) but not in the dynamic set-point arm (154 ± 10 mg/dL, P = ns). There was no significant difference in time spent in range (70-180 mg/dL) among the three study arms. There was less time <70 mg/dL with both the static (1.8% ± 1.4%, P = .009) and dynamic set-point (2.7±1.5, P = .051) arms compared to the usual-care arm (5.5% ± 4.2%). HF testing demonstrated preliminary user satisfaction and no increased risk of diabetes burden or distress. CONCLUSIONS: The insulin-only configuration of the BP using either static or dynamic set-points and initialized only with body weight performed similarly to other published insulin-only systems.

4.
Diabetes Technol Ther ; 21(6): 356-363, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31095423

RESUMO

Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.

5.
Diabetes Technol Ther ; 21(5): 265-272, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30925077

RESUMO

Background: The objective of this study was to assess the safety and performance of the Omnipod® personalized model predictive control (MPC) algorithm with variable glucose setpoints and moderate intensity exercise using an investigational device in adults with type 1 diabetes (T1D). Materials and Methods: A supervised 54-h hybrid closed-loop (HCL) study was conducted in a hotel setting after a 7-day outpatient standard treatment phase. Adults aged 18-65 years with T1D and HbA1c between 6.0% and 10.0% were eligible. Subjects completed two moderate intensity exercise sessions of >30 min duration on consecutive days: the first with the glucose set point increased from 130 to 150 mg/dL and the second with a temporary basal rate of 50%, both started 90 min pre-exercise. Primary endpoints were percentage time in hypoglycemia <70 mg/dL and hyperglycemia ≥250 mg/dL. Results: Twelve subjects participated in the study, with (mean ± standard deviation) age 36.5 ± 14.4 years, diabetes duration 21.7 ± 15.7 years, HbA1c 7.6% ± 1.1%, and total daily dose 0.60 ± 0.22 U/kg. Outcomes for the 54-h HCL period were mean glucose: 136 ± 14 mg/dL, percentage time <70 mg/dL: 1.4% ± 1.3%, 70-180 mg/dL: 85.1% ± 9.3%, and ≥250 mg/dL: 1.8% ± 2.4%. In the 12-h period after exercise start, percentage time <70 mg/dL was 1.4% ± 2.7% with the raised glucose set point and 1.6% ± 3.0% with reduced basal rate. The percentage time <70 mg/dL overnight was 0% ± 0% on both study nights. Conclusions: The Omnipod personalized MPC algorithm performed well and was safe during day and night use in response to variable glucose set points and with temporarily raised glucose set point or reduced basal rate 90 min in advance of moderate intensity exercise in adults with T1D.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Sistemas de Infusão de Insulina , Insulina/uso terapêutico , Adolescente , Adulto , Idoso , Algoritmos , Diabetes Mellitus Tipo 1/sangue , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Diabetes Sci Technol ; 13(1): 20-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239214

RESUMO

The Omnipod DASH™ Insulin Management System (Insulet Corp, Billerica, MA) is a discreet, tubeless, wearable insulin pump that holds up to 200 units of U-100 insulin and delivers therapy through customizable basal rates and bolus amounts. This recently FDA-cleared system consists of the insulin pump ("Pod"), which is worn on body and delivers insulin, and the Personal Diabetes Manager (PDM), which is a handheld device used to wirelessly control and monitor the Pod functionality. The PDM can also be paired with the CONTOUR® NEXT ONE blood glucose (BG) meter (Ascensia Diabetes Care, Basel, Switzerland) to wirelessly receive BG readings. This review provides a detailed description of the Pod and PDM. Key features of the Pod are described, including the novel pump delivery mechanism, waterproof (IP28) housing design, and automated cannula insertion. The technology introduced in the new system, such as touchscreen PDM interface, Bluetooth® wireless technology, and wireless internet connectivity, is also presented. Last, Omnipod® Insulin Management System clinical data are reviewed, including early feasibility results for the Omnipod Horizon™ Automated Glucose Control hybrid closed-loop system.

7.
Diabetes Technol Ther ; 20(10): 648-653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30239219

RESUMO

BACKGROUND: Hybrid closed loop (HCL) systems are designed to automate insulin delivery to improve type 1 diabetes (T1D) outcomes and reduce user burden and distress. Because the systems only automate some aspects of diabetes care, psychosocial and human factors remain an important consideration in their use. Thus, we examined whether psychosocial and human factors (i.e., distress related to diabetes management, fear of hypoglycemia, and technology attitudes) would (1) change after using the system and (2) predict glycemic outcomes during the trial. SUBJECTS AND METHODS: Fourteen adults and 15 adolescents with T1D participated in a multisite clinical trial of an investigational version of the MiniMed™ 670G system (Medtronic, Northridge, CA) over 4 to 5 days in a semisupervised outpatient setting. Users completed surveys assessing psychosocial and human factors before beginning the HCL system and at the conclusion of the study. t-Tests and regression analyses were conducted to examine whether these factors changed following trial exposure to the HCL system and predicted glycemic outcomes during the trial. RESULTS: Diabetes management distress decreased and diabetes technology attitudes became more positive over the trial period. Fear of hypoglycemia did not change over the trial period. There was a trend toward greater pretrial management distress predicting less time in range during the trial, controlling for time in range before the trial. CONCLUSIONS: Results suggest that this system is promising for enhancing technology attitudes and reducing management distress. Psychosocial factors, such as management distress, may negatively impact glycemic outcomes and should be a priority area for further investigation.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/psicologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Sistemas de Infusão de Insulina/psicologia , Insulina/administração & dosagem , Insulina/uso terapêutico , Adolescente , Adulto , Atitude , Glicemia/análise , Medo , Feminino , Humanos , Hipoglicemia/psicologia , Masculino , Estresse Psicológico/etiologia , Estresse Psicológico/psicologia , Resultado do Tratamento , Adulto Jovem
8.
Diabetes Technol Ther ; 20(9): 585-595, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30070928

RESUMO

BACKGROUND: This study assessed the safety and performance of the Omnipod® personalized model predictive control (MPC) algorithm using an investigational device in adults with type 1 diabetes in response to overestimated and missed meal boluses and extended boluses for high-fat meals. MATERIALS AND METHODS: A supervised 54-h hybrid closed-loop (HCL) study was conducted in a hotel setting after a 7-day outpatient open-loop run-in phase. Adults aged 18-65 years with type 1 diabetes and HbA1c 6.0%-10.0% were eligible. Primary endpoints were percentage time in hypoglycemia <70 mg/dL and hyperglycemia ≥250 mg/dL. Glycemic responses for 4 h to a 130% overestimated bolus and a missed meal bolus were compared with a 100% bolus for identical meals, respectively. The 12-h postprandial responses to a high-fat meal were compared using either a standard or extended bolus. RESULTS: Twelve subjects participated in the study, with (mean ± standard deviation): age 35.4 ± 14.1 years, diabetes duration 16.5 ± 9.3 years, HbA1c 7.7 ± 0.9%, and total daily dose 0.58 ± 0.19 U/kg. Outcomes for the 54-h HCL period were mean glucose 153 ± 15 mg/dL, percentage time <70 mg/dL [median (interquartile range)]: 0.0% (0.0-1.2%), 70-180 mg/dL: 76.1% ± 8.0%, and ≥250 mg/dL: 4.5% ± 3.6%. After both the 100% and 130% boluses, postprandial percentage time <70 mg/dL was 0.0% (0.0-0.0%) (P = 0.50). After the 100% and missed boluses, postprandial percentage time ≥250 mg/dL was 0.2% ± 0.6% and 10.3% ± 16.5%, respectively (P = 0.06). Postprandial percentages time ≥250 mg/dL and <70 mg/dL were similar with standard or extended boluses for a high-fat meal. CONCLUSIONS: The Omnipod personalized MPC algorithm performed well and was safe during day and night use in response to overestimated, missed, and extended meal boluses in adults with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Adulto , Algoritmos , Glicemia , Comportamento Alimentar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial , Período Pós-Prandial , Adulto Jovem
9.
Diabetes Technol Ther ; 20(5): 335-343, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29658779

RESUMO

BACKGROUND: Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting. RESEARCH DESIGN AND METHODS: The Android phone-based AP system with remote monitoring was tested for 72 h in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events. RESULTS: Mean 24-h continuous glucose monitor (CGM) was 157.4 ± 14.4 mg/dL, with 63.6 ± 9.2% of readings between 70 and 180 mg/dL, 2.9 ± 2.3% of readings <70 mg/dL, and 9.0 ± 3.9% of readings >250 mg/dL. Moderate hyperglycemia was relatively common with 24.6 ± 6.2% of readings between 180 and 250 mg/dL, primarily within 3 h after a meal. Overnight mean CGM was 139.6 ± 27.6 mg/dL, with 77.9 ± 16.4% between 70 and 180 mg/dL, 3.0 ± 4.5% <70 mg/dL, 17.1 ± 14.9% between 180 and 250 mg/dL, and 2.0 ± 4.5%> 250 mg/dL. Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h postmeal CGM 197.8 ± 44.1 vs. 140.6 ± 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria. CONCLUSIONS: MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are needed in a less supervised environment.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Pâncreas Artificial , Adolescente , Adulto , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Resultado do Tratamento , Adulto Jovem
10.
Diabetes Technol Ther ; 20(4): 257-262, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431513

RESUMO

BACKGROUND: The safety and feasibility of the OmniPod personalized model predictive control (MPC) algorithm in adult, adolescent, and pediatric patients with type 1 diabetes were investigated. METHODS: This multicenter, observational trial included a 1-week outpatient sensor-augmented pump open-loop phase and a 36-h inpatient hybrid closed-loop (HCL) phase with announced meals ranging from 30 to 90 g of carbohydrates and limited physical activity. Patients aged 6-65 years with HbA1c between 6.0% and 10.0% were eligible. The investigational system included a modified version of OmniPod, the Dexcom G4 505 Share® AP System, and the personalized MPC algorithm running on a tablet computer. Primary endpoints included sensor glucose percentage of time in hypoglycemia <70 mg/dL and hyperglycemia >250 mg/dL. Additional glycemic targets were assessed. RESULTS: The percentage of time <70 mg/dL during the 36-h HCL phase was mean (standard deviation): 0.7 (1.7) in adults receiving 80% meal bolus (n = 24), and 0.7 (1.2) in adults (n = 10), 2.0 (2.4) in adolescents (n = 12), and 2.0 (2.6) in pediatrics (n = 12) receiving 100% meal bolus. The overall hypoglycemia rate was 0.49 events/24 h. The percentage of time >250 mg/dL was 8.0 (7.5), 3.6 (3.7), 4.9 (6.3), and 6.7 (5.6) in the study groups, respectively. Percentage of time in the target range of 70-180 mg/dL was 69.5 (14.4), 73.0 (15.0), 72.6 (15.5), and 70.1 (12.3), respectively. CONCLUSIONS: The OmniPod personalized MPC algorithm performed well and was safe during day and night use in adult, adolescent, and pediatric patients with type 1 diabetes. Longer term studies will assess the safety and performance of the algorithm under free living conditions with extended use.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina/efeitos adversos , Insulina/administração & dosagem , Adolescente , Adulto , Idoso , Algoritmos , Criança , Diabetes Mellitus Tipo 1/sangue , Estudos de Viabilidade , Feminino , Hemoglobina A Glicada , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
J Diabetes Sci Technol ; 12(3): 599-607, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29390915

RESUMO

BACKGROUND: As evidence emerges that artificial pancreas systems improve clinical outcomes for patients with type 1 diabetes, the burden of this disease will hopefully begin to be alleviated for many patients and caregivers. However, reliance on automated insulin delivery potentially means patients will be slower to act when devices stop functioning appropriately. One such scenario involves an insulin infusion site failure, where the insulin that is recorded as delivered fails to affect the patient's glucose as expected. Alerting patients to these events in real time would potentially reduce hyperglycemia and ketosis associated with infusion site failures. METHODS: An infusion site failure detection algorithm was deployed in a randomized crossover study with artificial pancreas and sensor-augmented pump arms in an outpatient setting. Each arm lasted two weeks. Nineteen participants wore infusion sets for up to 7 days. Clinicians contacted patients to confirm infusion site failures detected by the algorithm and instructed on set replacement if failure was confirmed. RESULTS: In real time and under zone model predictive control, the infusion site failure detection algorithm achieved a sensitivity of 88.0% (n = 25) while issuing only 0.22 false positives per day, compared with a sensitivity of 73.3% (n = 15) and 0.27 false positives per day in the SAP arm (as indicated by retrospective analysis). No association between intervention strategy and duration of infusion sets was observed ( P = .58). CONCLUSIONS: As patient burden is reduced by each generation of advanced diabetes technology, fault detection algorithms will help ensure that patients are alerted when they need to manually intervene. Clinical Trial Identifier: www.clinicaltrials.gov,NCT02773875.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Pâncreas Artificial/efeitos adversos , Adulto , Estudos Cross-Over , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/prevenção & controle , Falha de Equipamento , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade
13.
Pediatr Diabetes ; 19(3): 420-428, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29159870

RESUMO

OBJECTIVE: The primary objective of this trial was to evaluate the feasibility, safety, and efficacy of a predictive hyperglycemia and hypoglycemia minimization (PHHM) system vs predictive low glucose suspension (PLGS) alone in optimizing overnight glucose control in children 6 to 14 years old. RESEARCH DESIGN AND METHODS: Twenty-eight participants 6 to 14 years old with T1D duration ≥1 year with daily insulin therapy ≥12 months and on insulin pump therapy for ≥6 months were randomized per night into PHHM mode or PLGS-only mode for 42 nights. The primary outcome was percentage of time in sensor-measured range 70 to 180 mg/dL in the overnight period. RESULTS: The addition of automated insulin delivery with PHHM increased time in target range (70-180 mg/dL) from 66 ± 11% during PLGS nights to 76 ± 9% during PHHM nights (P<.001), without increasing hypoglycemia as measured by time below various thresholds. Average morning blood glucose improved from 176 ± 28 mg/dL following PLGS nights to 154 ± 19 mg/dL following PHHM nights (P<.001). CONCLUSIONS: The PHHM system was effective in optimizing overnight glycemic control, significantly increasing time in range, lowering mean glucose, and decreasing glycemic variability compared to PLGS alone in children 6 to 14 years old.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Sistemas de Infusão de Insulina , Monitorização Ambulatorial/instrumentação , Adolescente , Glicemia , Criança , Alarmes Clínicos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Humanos , Masculino
15.
Diabetes Technol Ther ; 19(9): 527-532, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28767276

RESUMO

OBJECTIVE: A fully closed-loop insulin-only system was developed to provide glucose control in patients with type 1 diabetes without requiring announcement of meals or activity. Our goal was to assess initial safety and efficacy of this system. RESEARCH DESIGN AND METHODS: The multiple model probabilistic controller (MMPPC) anticipates meals when the patient is awake. The controller used the subject's basal rates and total daily insulin dose for initialization. The system was tested at two sites on 10 patients in a 30-h inpatient study, followed by 15 subjects at three sites in a 54-h supervised hotel study, where the controller was challenged by exercise and unannounced meals. The system was implemented on the UVA DiAs system using a Roche Spirit Combo Insulin Pump and a Dexcom G4 Continuous Glucose Monitor. RESULTS: The mean overall (24-h basis) and nighttime (11 PM-7 AM) continuous glucose monitoring (CGM) values were 142 and 125 mg/dL during the inpatient study. The hotel study used a different daytime tuning and manual announcement, instead of automatic detection, of sleep and wake periods. This resulted in mean overall (24-h basis) and nighttime CGM values of 152 and 139 mg/dL for the hotel study and there was also a reduction in hypoglycemia events from 1.6 to 0.91 events/patient/day. CONCLUSIONS: The MMPPC system achieved a mean glucose that would be particularly helpful for people with an elevated A1c as a result of frequent missed meal boluses. Current full closed loop has a higher risk for hypoglycemia when compared with algorithms using meal announcement.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Refeições , Pâncreas Artificial/efeitos adversos , Acelerometria , Atividades Cotidianas , Adulto , Algoritmos , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Exercício Físico , Estudos de Viabilidade , Feminino , Seguimentos , Hospitalização , Humanos , Hipoglicemia/epidemiologia , Hipoglicemia/etiologia , Masculino , Teste de Materiais , Risco , Lanches , Estados Unidos/epidemiologia , Adulto Jovem
16.
J Health Psychol ; : 1359105317718615, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810490

RESUMO

Automated closed loop systems will greatly change type 1 diabetes management; user trust will be essential for acceptance of this new technology. This qualitative study explored trust in 32 individuals following a hybrid closed loop trial. Participants described how context-, system-, and person-level factors influenced their trust in the system. Participants attempted to override the system when they lacked trust, while trusting the system decreased self-management burdens and decreased stress. Findings highlight considerations for fostering trust in closed loop systems. Systems may be able to engage users by offering varying levels of controls to match trust preferences.

17.
Diabetes Care ; 40(8): 1096-1102, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28584075

RESUMO

OBJECTIVE: As artificial pancreas (AP) becomes standard of care, consideration of extended use of insulin infusion sets (IIS) and continuous glucose monitors (CGMs) becomes vital. We conducted an outpatient randomized crossover study to test the safety and efficacy of a zone model predictive control (zone-MPC)-based AP system versus sensor augmented pump (SAP) therapy in which IIS and CGM failures were provoked via extended wear to 7 and 21 days, respectively. RESEARCH DESIGN AND METHODS: A smartphone-based AP system was used by 19 adults (median age 23 years [IQR 10], mean 8.0 ± 1.7% HbA1c) over 2 weeks and compared with SAP therapy for 2 weeks in a crossover, unblinded outpatient study with remote monitoring in both study arms. RESULTS: AP improved percent time 70-140 mg/dL (48.1 vs. 39.2%; P = 0.016) and time 70-180 mg/dL (71.6 vs. 65.2%; P = 0.008) and decreased median glucose (141 vs. 153 mg/dL; P = 0.036) and glycemic variability (SD 52 vs. 55 mg/dL; P = 0.044) while decreasing percent time <70 mg/dL (1.3 vs. 2.7%; P = 0.001). AP also improved overnight control, as measured by mean glucose at 0600 h (140 vs. 158 mg/dL; P = 0.02). IIS failures (1.26 ± 1.44 vs. 0.78 ± 0.78 events; P = 0.13) and sensor failures (0.84 ± 0.6 vs. 1.1 ± 0.73 events; P = 0.25) were similar between AP and SAP arms. Higher percent time in closed loop was associated with better glycemic outcomes. CONCLUSIONS: Zone-MPC significantly and safely improved glycemic control in a home-use environment despite prolonged CGM and IIS wear. This project represents the first home-use AP study attempting to provoke and detect component failure while successfully maintaining safety and effective glucose control.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Pâncreas Artificial , Adolescente , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Hemoglobina A Glicada/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Masculino , Pacientes Ambulatoriais , Smartphone , Adulto Jovem
18.
Diabetes Technol Ther ; 19(6): 331-339, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459617

RESUMO

BACKGROUND: The artificial pancreas (AP) has the potential to improve glycemic control in adolescents. This article presents the first evaluation in adolescents of the Zone Model Predictive Control and Health Monitoring System (ZMPC+HMS) AP algorithms, and their first evaluation in a supervised outpatient setting with frequent exercise. MATERIALS AND METHODS: Adolescents with type 1 diabetes underwent 3 days of closed-loop control (CLC) in a hotel setting with the ZMPC+HMS algorithms on the Diabetes Assistant platform. Subjects engaged in twice-daily exercise, including soccer, tennis, and bicycling. Meal size (unrestricted) was estimated and entered into the system by subjects to trigger a bolus, but exercise was not announced. RESULTS: Ten adolescents (11.9-17.7 years) completed 72 h of CLC, with data on 95 ± 14 h of sensor-augmented pump (SAP) therapy before CLC as a comparison to usual therapy. The percentage of time with continuous glucose monitor (CGM) 70-180 mg/dL was 71% ± 10% during CLC, compared to 57% ± 16% during SAP (P = 0.012). Nocturnal control during CLC was safe, with 0% (0%, 0.6%) of time with CGM <70 mg/dL compared to 1.1% (0.0%, 14%) during SAP. Despite large meals (estimated up to 120 g carbohydrate), only 8.0% ± 6.9% of time during CLC was spent with CGM >250 mg/dL (16% ± 14% during SAP). The system remained connected in CLC for 97% ± 2% of the total study time. No adverse events or severe hypoglycemia occurred. CONCLUSIONS: The use of the ZMPC+HMS algorithms is feasible in the adolescent outpatient environment and achieved significantly more time in the desired glycemic range than SAP in the face of unannounced exercise and large announced meal challenges.


Assuntos
Comportamento do Adolescente , Fenômenos Fisiológicos da Nutrição do Adolescente , Diabetes Mellitus Tipo 1/terapia , Exercício Físico , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Pâncreas Artificial , Atividades Cotidianas , Adolescente , Algoritmos , Criança , Comportamento Infantil , Fenômenos Fisiológicos da Nutrição Infantil , Estudos de Coortes , Terapia Combinada , Diabetes Mellitus Tipo 1/sangue , Estudos de Viabilidade , Feminino , Preferências Alimentares , Humanos , Masculino , Pâncreas Artificial/efeitos adversos , Esportes , Estados Unidos
19.
Diabetes Educ ; 43(2): 223-232, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28340542

RESUMO

Purpose The first hybrid closed loop (HCL) system, which automates insulin delivery but requires user inputs, was approved for treatment of type 1 diabetes (T1D) by the US Food and Drug Administration in September 2016. The purpose of this study was to explore the benefits, expectations, and attitudes of individuals with T1D following a clinical trial of an HCL system. Methods Thirty-two individuals with T1D (17 adults, 15 adolescents) participated in focus groups after 4 to 5 days of system use. Content analysis generated themes regarding perceived benefits, hassles, and limitations. Results Some participants felt misled by terms such as "closed loop" and "artificial pancreas," which seemed to imply a more "hands-off" experience. Perceived benefits were improved glycemic control, anticipated reduction of long-term complications, better quality of life, and reduced mental burden of diabetes. Hassles and limitations included unexpected tasks for the user, difficulties wearing the system, concerns about controlling highs, and being reminded of diabetes. Conclusion Users are willing to accept some hassles and limitations if they also perceive health and quality-of-life benefits beyond current self-management. It is important for clinicians to provide a balanced view of positives and negatives to help manage expectations.


Assuntos
Automonitorização da Glicemia/psicologia , Diabetes Mellitus Tipo 1/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Sistemas de Infusão de Insulina , Pâncreas Artificial , Adolescente , Adulto , Glicemia/efeitos dos fármacos , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Resultado do Tratamento , Adulto Jovem
20.
Diabetes Technol Ther ; 19(5): 288-292, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28221823

RESUMO

BACKGROUND: Predictions based on continuous glucose monitoring (CGM) data are the basis for automatic suspension and resumption of insulin delivery by a predictive low-glucose management feature termed "suspend before low," which is part of the Medtronic MiniMed® 640G combined insulin pump and CGM system. This study assessed the safety and performance characteristics of the system in an in-clinic setting at eight sites. MATERIALS AND METHODS: In-clinic standardized increases in basal insulin delivery rates were used to induce nocturnal hypoglycemia in subjects (14-75 years) with type 1 diabetes wearing the MiniMed 640G system. The "suspend before low" feature was set at 65 mg/dL, and as a result, the predictive algorithm suspended insulin delivery when the forecasted glucose was predicted to be ≤85 mg/dL in 30 min (a 20 mg/dL safety buffer). Reference plasma glucose values (Yellow Springs Instruments [YSI], Yellow Springs, OH) were used to establish hypoglycemia and were defined as ≥2 consecutive values ≤65 mg/dL. RESULTS: Eighty subjects were screened. Among the 69 successful completers, 27 experienced a hypoglycemic event and 42 did not, a prevention rate of 60%. The mean (±standard deviation) YSI value at the time of pump suspension was 101 ± 18.5 mg/dL, and the mean duration of the 68 "suspend before low" events was 105 ± 27 min. At 120 min after the start of the pump suspension events, the mean YSI value was 102 ± 34.6 mg/dL. CONCLUSION: The MiniMed 640G "suspend before low" feature prevented 60% of induced predicted hypoglycemic events without significant rebound hyperglycemia.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/terapia , Hipoglicemia/prevenção & controle , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Pâncreas Artificial , Centros Médicos Acadêmicos , Atividades Cotidianas , Adolescente , Adulto , Idoso , Algoritmos , Estudos Cross-Over , Diabetes Mellitus Tipo 1/sangue , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversos , Teste de Materiais , Pessoa de Meia-Idade , Monitorização Ambulatorial/efeitos adversos , Pâncreas Artificial/efeitos adversos , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA