Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 142(11): 3316-3318, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665751
2.
Epilepsia ; 60(11): 2277-2285, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31625145

RESUMO

OBJECTIVE: Monoallelic de novo gain-of-function variants in the voltage-gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss-of-function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss-of-function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild-type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A. METHODS: We identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells. RESULTS: We identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss-of-function, and one allele with altered biophysical properties consistent with partial loss-of-function. SIGNIFICANCE: These studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.

3.
Epilepsy Res ; 156: 106181, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31394400

RESUMO

Infantile spasms (IS) is a developmental and epileptic encephalopathy with heterogeneous etiologies including many genetic causes. Genetic studies have identified pathogenic variants in over 30 genes as causes of IS. Many of these genetic causes are extremely rare, with only one reported incidence in an individual with IS. To better understand the genetic landscape of IS, we used targeted sequencing to screen 42 candidate IS genes and 53 established developmental and epileptic encephalopathy genes in 92 individual with IS. We identified a genetic diagnosis for 7.6% of our cohort, including pathogenic variants in KCNB1 (n = 2), GNAO1 (n = 1), STXBP1 (n = 1), SLC35A2 (n = 1), TBL1XR1 (n = 1), and KIF1A (n = 1). Our data emphasize the genetic heterogeneity of IS and will inform the diagnosis and management of individuals with this devastating disorder.

4.
Epilepsy Behav ; 97: 244-252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31254844

RESUMO

OBJECTIVE: The objective of the study was to investigate electroclinical and neuropsychological features, genetic background, and evolution of children with idiopathic encephalopathy with status epilepticus during slow sleep (ESES), including Landau-Kleffner syndrome (LKS). MATERIAL AND METHODS: All children diagnosed with idiopathic ESES at the Danish Epilepsy Centre between March 2003 and December 2014 were retrospectively reviewed. Repeated 24-hour electroencephalography (24-h EEG) recordings, neuropsychological assessments, and clinical-neurological evaluation were performed throughout the follow-up in all patients. In 13 children, genetic investigations were performed. RESULTS: We collected 24 children (14 males and 10 females). Mean age at ESES diagnosis was 6 years, and mean ESES duration was 2 years and 7 months. Twenty-one children had epileptic seizures. Three children had LKS. Topography of sleep-related EEG epileptic abnormalities was diffuse in 3 subjects, hemispheric in 6, multifocal in 9, and focal in 6. During the active phase of ESES, all children presented with a heterogeneous combination of behavioral and cognitive disturbances. In 14 children, a parallel between severity of the clinical picture and spike-wave index (SWI) was observed. We could not find a strict correlation between the type and severity of neurobehavioral impairment and the side/topography of sleep-related EEG discharges during the active phase of ESES. At the last follow-up, 21 children were in remission from ESES. Complete recovery from neurobehavioral disorders was observed in 5 children. Genetic assessment, performed in 13 children, showed GRIN2A variant in two (15.4%). SIGNIFICANCE: Our patients with idiopathic ESES showed a heterogeneous pattern of epileptic seizures, neurobehavioral disorders, and sleep EEG features. Only one-fourth of children completely recovered from the neuropsychological disturbances after ESES remission. Lack of correlation between severity/type of cognitive derangement and SWI and/or topography of sleep EEG epileptic abnormalities may suggest the contribution of additional factors (including impaired sleep homeostasis due to epileptic activity) in the neurobehavioral derangement that characterize ESES.

5.
Epileptic Disord ; 21(S1): 41-47, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149903

RESUMO

Formerly idiopathic, focal epilepsies (IFE) are self-limiting, "age-related" diseases that mainly occur during critical developmental periods. Childhood epilepsy with centrotemporal spikes, or Rolandic epilepsy (RE), is the most frequent form of IFE. Together with the Landau-Kleffner syndrome and the epileptic Encephalopathy related to Status Epilepticus during slow Sleep syndrome (ESES), RE is part of a single and continuous spectrum of childhood epilepsies and epileptic encephalopathies with acquired cognitive, behavioral and speech and/or language impairment, known as the epilepsy-aphasia spectrum (EAS). The pathophysiology has long been attributed to an elusive and complex interplay between brain development and maturation processes on the one hand, and susceptibility genes on the other hand. Studies based on the variable combination of molecular cytogenetics, Sanger and next-generation sequencing tools, and functional assays have led to the identification and validation of genetic mutations in the GRIN2A gene that can directly cause various types of EAS disorders. The recent identification of GRIN2A defects in EAS represents a first and major break-through in our understanding of the underlying pathophysiological mechanisms. In this review, we describe the current knowledge on the genetic architecture of IFE.

6.
Neurotherapeutics ; 16(3): 848-857, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054119

RESUMO

Pathogenic variants in KCNT1 represent an important cause of treatment-resistant epilepsy, for which an effective therapy has been elusive. Reports about the effectiveness of quinidine, a candidate precision therapy, have been mixed. We sought to evaluate the treatment responsiveness of patients with KCNT1-related epilepsy. We performed an observational study of 43 patients using a collaborative KCNT1 patient registry. We assessed treatment efficacy based upon clinical seizure reduction, side effects of quinidine therapy, and variant-specific responsiveness to treatment. Quinidine treatment resulted in a > 50% seizure reduction in 20% of patients, with rare patients achieving transient seizure freedom. Multiple other therapies demonstrated some success in reducing seizure frequency, including the ketogenic diet and vigabatrin, the latter particularly in patients with epileptic spasms. Patients with the best quinidine response had variants that clustered distal to the NADP domain within the RCK2 domain of the protein. Half of patients did not receive a quinidine trial. In those who did, nearly half did not achieve therapeutic blood levels. More favorable response to quinidine in patients with KCNT1 variants distal to the NADP domain within the RCK2 domain may suggest a variant-specific response.

7.
Am J Hum Genet ; 104(6): 1060-1072, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104773

RESUMO

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the µ-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the µ-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2µ conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.

8.
Epilepsia ; 60(6): e63-e66, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31077350

RESUMO

Severe early onset epilepsies are often caused by de novo pathogenic variants. Few studies have reported the frequency of somatic mosaicism in parents of children with severe epileptic encephalopathies. Here we aim to investigate the frequency of mosaicism in the parents of children with epilepsy caused by alleged de novo variants. We tested parental genomic DNA derived from different tissues for 75 cases using targeted next-generation sequencing. Five parents (6.6%) showed mosaicism at minor allele frequencies of 0.8%-29% for the pathogenic variant detected in their offspring. Parental mosaicism was observed in the following genes: SCN1A, SCN2A, SCN8A, and STXBP1. One of the identified parents had epilepsy himself. Our results show that de novo events can occur already in parental tissue and in some cases can be detected in peripheral blood. Consequently, parents affected by low-grade mosaicism are faced with an increased recurrence risk for transmitting the pathogenic variant, compared to the overall recurrence risk for a second affected child estimated at approximately 1%. However, testing for parental somatic mosaicism will help identifying those parents who truly are at higher risk and will significantly improve genetic counseling in the respective families.

9.
Genet Med ; 21(10): 2216-2223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.

10.
Epilepsia ; 60(5): 830-844, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30968951

RESUMO

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.

11.
Ann Clin Transl Neurol ; 6(2): 386-391, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30847371

RESUMO

Mutations in the sodium-activated potassium channel gene KCNT1 have been associated with nonlesional sleep-related hypermotor epilepsy (SHE). We report the co-occurrence of mild malformation of cortical development (mMCD) and KCNT1 mutations in four patients with SHE. Focal cortical dysplasia type I was neuropathologically diagnosed after epilepsy surgery in three unrelated MRI-negative patients, periventricular nodular heterotopia was detected in one patient by MRI. Our findings suggest that KCNT1 epileptogenicity may result not only from dysregulated excitability by controlling Na+K+ transport, but also from mMCD. Therefore, pathogenic variants in KCNT1 may encompass both lesional and nonlesional epilepsies.

12.
Int J Neurosci ; 129(9): 890-895, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30892110

RESUMO

Aim: Neuronal ceroid lipofuscinosis (NCLs) are the most common neurodegenerative disorders, with global incidence of 1 in 100,000 live births. NCLs affect central nervous system, primarily cerebellar and cerebral cortices. Juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease, is the most common form of NCLs. JNCL is primarily caused by pathogenic mutations in CLN3 gene, which encodes a transporter transmembrane protein of uncertain function. The 1.02 kb deletion is the most common mutation in CLN3 that results in frame shift and a premature termination leading to nonfunctional protein. Here, we invetigated a large consanguineous family consisting of four affected individuals with clincal symptoms suggestive of Juvenile neuronal ceroid lipofuscinosis. Materials and methods: We conducted clinial and radilogical investigation of the family and performed NGS based Gene Panel sequencing comprising of five hundred and forty five candidate genes to characterize it at genetic level. Results: We identified a novel homozygous c.181_183delGAC mutation in the CLN3 gene seggregating witht the disorder in the family. The mutation induces in-frame deletion, deleting one amino acid (p.Asp61del) in CLN3 protein. The deleted amino acid aspartic acid plays an important role as general acid in enzymes active centers as well as in maintaining the ionic character of proteins. Conclusion: Our finding adds to genetic variability of Juvenile neuronal ceroid lipofuscinosis associated with CLN3 gene and a predicted CLN3 protein interacting domain site.

13.
Epilepsia ; 60(5): e31-e36, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30719712

RESUMO

Juvenile myoclonic epilepsy (JME) is a common syndrome of genetic generalized epilepsies (GGEs). Linkage and association studies suggest that the gene encoding the bromodomain-containing protein 2 (BRD2) may increase risk of JME. The present methylation and association study followed up a recent report highlighting that the BRD2 promoter CpG island (CpG76) is differentially hypermethylated in lymphoblastoid cells from Caucasian patients with JME compared to patients with other GGE subtypes and unaffected relatives. In contrast, we found a uniform low average percentage of methylation (<4.5%) for 13 CpG76-CpGs in whole blood cells from 782 unrelated European Caucasians, including 116 JME patients, 196 patients with genetic absence epilepsies, and 470 control subjects. We also failed to confirm an allelic association of the BRD2 promoter single nucleotide polymorphism (SNP) rs3918149 with JME (Armitage trend test, P = 0.98), and we did not detect a substantial impact of SNP rs3918149 on CpG76 methylation in either 116 JME patients (methylation quantitative trait loci [meQTL], P = 0.29) or 470 German control subjects (meQTL, P = 0.55). Our results do not support the previous observation that a high DNA methylation level of the BRD2 promoter CpG76 island is a prevalent epigenetic motif associated with JME in Caucasians.

14.
Neurology ; 92(11): e1238-e1249, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737342

RESUMO

OBJECTIVE: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease-related variants. METHODS: We used next-generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. RESULTS: We describe 17 new variants in STX1B, which are distributed across the whole gene. We discerned 4 different phenotypic groups across the newly identified and previously published patients (49 patients in 23 families): (1) 6 sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development, and without permanent neurologic deficits; (2) 2 patients with genetic generalized epilepsy without febrile seizures and cognitive deficits; (3) 13 patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; (4) 2 patients with focal epilepsy. More often, we found loss-of-function mutations in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. CONCLUSION: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the International League Against Epilepsy classification. Variants in STX1B are protean and contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies.

15.
Curr Opin Neurol ; 32(2): 183-190, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664068

RESUMO

PURPOSE OF REVIEW: Recent publications point to an increasingly important role of variants in genes encoding GABAA receptor subunits associated with both common and rare forms of epilepsies. The aim of this review is to give an overview of the current clinical phenotypes, genetic findings and pathophysiological mechanisms related to GABAA receptor variants. RECENT FINDINGS: Early work showed that inherited variants in GABRG2 and GABRA1 cause relatively mild forms of monogenic epilepsies in large families. More recent studies have revealed that de novo variants in several GABAA receptor genes cause severe developmental and epileptic encephalopathies, inherited variants cause remarkably variable phenotypes within the same pedigrees ranging from asymptomatic carriers to developmental and epileptic encephalopathies, and variants in all GABAA receptor genes are enriched in common forms of epilepsy, namely rolandic epilepsy and genetic generalized epilepsy. Analyses from cellular expression systems and mouse models suggest that all variants cause a loss of GABAA receptor function resulting in GABAergic disinhibition. SUMMARY: Genetic studies have revealed a crucial role of the GABAergic system in the underlying pathogenesis of various forms of common and rare epilepsies. Our understanding of functional consequences of GABAA receptor variants provide an opportunity to develop precision-based therapeutic strategies that are hopefully free from the side-effect burden seen with currently available GABAergic drugs.

16.
Brain ; 142(2): 376-390, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615093

RESUMO

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
17.
Seizure ; 65: 131-137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30685520

RESUMO

PURPOSE: Heterozygous SYNGAP1 gene mutations have been associated with several forms of idiopathic generalized epilepsy, autism spectrum disorders and delay of psychomotor development. We report eight patients with a SYNGAP1 mutation and chewing/eating induced reflex seizures as new phenotype and compare them to other patients with eating epilepsy and genetic mutations. METHODS: Presentation of clinical and anamnestic features and retrospective analysis of Video-EEG data of a 4 year old index patient with SYNGAP1 mutation and chewing /eating induced seizures. Clinical and anamnestic features and home videos of seven additional patients (4 female; age: 4-14 years) with SYNGAP1 mutation and eating induced reflex seizures were compared. RESULTS: All reflex seizures of the index patient showed similar focal EEG pattern with 1-5 seconds high amplitude, irregular 3/sec spike-wave complexes with initiation from left temporo-occipital, right temporo-occipital or bi- occipital / temporo-occipital regions. Eyelid myoclonia, the most common seizure type in all 8 patients, were typically initiated by eating or other simple orofacial stimuli. In the index patient eye closure preceded eating induced-eyelid myoclonia in 30/38 seizures. CONCLUSION: The main clinical features of our patient (i.e. intellectual disability, epilepsy, autistic features) are compatible with previous reports on patients with SYNGAP1 mutations. This is the first complete description of eating induced seizures in association with SYNGAP1 mutations. Whether eye closure sensitivity (ECS) represents an independent reflex epileptic trait, as seen in other patients with idiopathic "generalized" epilepsies (IGE), or eye closure is part of a complex trigger mechanism in SYNGAP1 patients' remains to be elucidated.


Assuntos
Epilepsia Reflexa , Olho , Mastigação , Mutação/genética , Mioclonia , Proteínas Ativadoras de ras GTPase/genética , Adolescente , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia Reflexa/diagnóstico , Epilepsia Reflexa/etiologia , Epilepsia Reflexa/genética , Olho/inervação , Feminino , Humanos , Masculino , Mioclonia/diagnóstico , Mioclonia/etiologia , Mioclonia/genética
18.
Expert Rev Mol Diagn ; 19(3): 217-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661434

RESUMO

INTRODUCTION: Within the last decade, next-generation sequencing (NGS) has resulted in remarkable advances in the field of epilepsy genetics. NGS has become a routine part of the diagnostic workup in many countries. A workup that has led to higher diagnostic yields and insights into the underlying disease mechanisms. Areas covered: In this review, we report on the recent contributions of NGS testing to the diagnosis and the understanding of pathophysiological mechanisms, phenotypic variability, and genetic heterogeneity of different epilepsies including developmental and/or epileptic encephalopathies, focal and generalized epilepsies. Furthermore, we discuss how the increased knowledge of the genetic architecture of the epilepsies can be translated into more personalized treatment. Expert opinion/commentary: Targeted gene panels or whole exome sequencing can provide a genetic diagnosis for up to 30% of the patients with early-onset epilepsy. Despite current technical limitations, NGS-based technologies can become the new first-tier diagnostic tests in the epilepsies. As the pool of genetically diagnosed patients has increased, so has the demand for more accurate treatment. Approximately 25% of the epilepsy patients with de novo mutations have genetic diagnoses with potential targets for precision medicine approaches, thus illustrating the enormous utility of genetic testing for therapeutic decision-making.

19.
Neurology ; 91(22): e2078-e2088, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413629

RESUMO

OBJECTIVE: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. METHODS: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. RESULTS: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. CONCLUSION: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30194038

RESUMO

We aim to further delineate the phenotype associated with pathogenic variants in the SLC35A2 gene, and review all published literature to-date. This gene is located on the X chromosome and encodes a UDP-galactose transporter. Pathogenic variants in SLC35A2 cause a congenital disorder of glycosylation. The condition is rare, and less than twenty patients have been reported to-date. The phenotype is complex and has not been fully defined. Here, we present a series of five patients with de novo pathogenic variants in SLC35A2. The patients' phenotype includes developmental and epileptic encephalopathy with hypsarrhythmia, facial dysmorphism, severe intellectual disability, skeletal abnormalities, congenital cardiac disease and cortical visual impairment. Developmental and epileptic encephalopathy with hypsarrhythmia is present in most patients with SLC35A2 variants, and is drug-resistant in the majority of cases. Adrenocorticotropic hormone therapy may achieve partial or complete remission of seizures, but the effect is usually temporary. Isoelectric focusing of transferrins may be normal after infancy, therefore a congenital disorder of glycosylation should still be considered as a diagnosis in the presence of a suggestive phenotype. We also provide evidence that cortical visual impairment is part of the phenotypic spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA