Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Antioxidants (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671015

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. The etiology of PD has yet to be elucidated, and the disease remains incurable. Increasing evidence suggests that oxidative stress is the key causative factor of PD. Due to their capacity to alleviate oxidative stress, antioxidants hold great potential for the treatment of PD. Vitamins are essential organic substances for maintaining the life of organisms. Vitamin deficiency is implicated in the pathogenesis of various diseases, such as PD. In the present study, we investigated whether administration of vitamin B12 (VB12) could ameliorate PD phenotypes in vitro and in vivo. Our results showed that VB12 significantly reduced the generation of reactive oxygen species (ROS) in the rotenone-induced SH-SY5Y cellular PD model. In a Parkin gene knockout C. elegans PD model, VB12 mitigated motor dysfunction. Moreover, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model, VB12 also displayed protective effects, including the rescue of mitochondrial function, dopaminergic neuron loss, and movement disorder. In summary, our results suggest that vitamin supplementation may be a novel method for the intervention of PD, which is safer and more feasible than chemical drug treatment.

2.
J Environ Manage ; 330: 117163, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603255

RESUMO

A series of goethite-modified montmorillonite (GMt) materials was synthesized for the amelioration of cationic cadmium (Cd) and anionic arsenic (As) complex contaminants in soil and water bodies. The results showed that goethite (Gt) was successfully loaded onto the surface of montmorillonite (Mt), which possessed more functional groups (such as Fe-O, and Fe-OH) and a larger specific surface area. GMt-0.5 (Mt loaded with Gt at a ratio of 0.5:1) showed the highest adsorption capacity for Cd(II) and As(III) with the maximum of 50.61 mg/g and 57.58 mg/g, respectively. The removal rate of Cd(II) was highly pH dependent, while the removal rate of As(III) showed little dependence on pH. The goethite on montmorillonite might contribute to the formation of surface complexes with As(III) and oxidation of As(III) to As(V). In the binary system, both, synergistic and competitive adsorption existed simultaneously. Importantly, in the binary system, the removal of As(III) was more favorable because of the electrostatic interaction, formation of a ternary complex, and co-precipitation. In addition, the amendment of GMt-0.5 significantly reduced the availability of Cd and As in the soil. This study suggests that GMt-0.5 is a promising candidate for the simultaneous immobilization of metal (loid)s in both, aqueous solution and mine soil.

3.
ACS Sens ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630305

RESUMO

3-Hydroxy-2-butanone is one of the biomarkers of Listeria monocytogenes, which is quite important for the intelligent detection of 3H-2B. However, it is still a challenge to fabricate sensing materials obtaining excellent sensitivity and selectivity under the ppb-level detection limit. Herein, a plasma-assisted synthetic approach was proposed for the construction of hierarchical nanostructures and the simultaneous loading of TAPP-COFs, which could reduce interlayer interaction and convert the metallized sites on the surface of predesigned porphyrin rings into quantum nanoparticles. These multichannel pathways of Co-TAPP-COFs@SnO2@MWCNTs nanocages contributed to the gas adsorption and diffusion, thus enhancing the sensing behavior. The nanocages exhibited a highly specific sensing performance toward 3H-2B with the highest sensitivity (Ra/Rg = 100.9 to 0.5 ppm) in all reported sensing materials. The 3H-2B sensor presented outstanding long-term stability, and the detection limit was 100 ppb at room temperature. Furthermore, the synthesized materials were integrated into the sensing module connecting to an Internet of Things platform, providing rapid and real-time detection of 3H-2B. We also applied machine learning methods to analyze the nanocage-based sensors and found that the combined effects of modified sites on the heterointerfaces contributed to the improvement of the sensing performance.

4.
Biosci Microbiota Food Health ; 42(1): 13-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660592

RESUMO

Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that Bifidobacterium longum ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of B. longum ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, B. longum ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that B. longum ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of B. longum ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.

5.
Neurochem Int ; 163: 105485, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36623734

RESUMO

Understanding how experiences affect females' behaviors and neuronal plasticity is essential for uncovering the mechanism of neurodevelopmental disorders. The study explored how neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) impacted the CA1 and DG's neuronal plasticity in the dorsal hippocampus, and its relationships with passive avoidance, local corticotrophin-releasing factor (CRF) levels, and oxytocin receptor (OTR) levels in female BALB/c mice. The results showed that MD damaged passive avoidance induced by foot shock and hotness, and EE restored it partially. In the CA1, MD raised CRF levels and OTR levels. Parallelly, MD increased synaptic connection levels but reduced the branches' numbers of pyramidal neurons. Meanwhile, in the DG, MD increased OTR levels but lowered CRF levels, DNA levels, and spine densities. EE did not change the CA1 and DG's CRF and OTR levels. However, EE added DG's dendrites of granular cells. The additive of MD and EE raised CA1's synaptophysin and DG's postsynaptic density protein-95 and OTR levels, and meanwhile, shaped avoidance behaviors primarily similar to the control. The results suggest that experience-driven avoidance change and hippocampal neuronal plasticity are associated with local CRF and OTR levels in female mice.

6.
Eur J Pharmacol ; : 175430, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36460131

RESUMO

Disruption of blood-testis barrier (BTB) was a crucial pathological feature of diabetes induced-testicular injury at early phase. Aucubin (AU), a main active component in Eucommiae Cortex, has drawn attention for its benefits against male reproductive system disease. The current study was aimed at investigating the protective role of AU and exploring the underlying mechanism in diabetic model. A murine model of type 2 diabetes mellitus (T2DM) was induced by high-fat diet (HFD) combined with streptozocin (STZ). Testicular weight index and morphology, sperm quality, integrity of BTB and protein levels were analyzed. The underlying mechanism of the protective effect of AU was further explored in Sertoli cells (SCs) cultured with high glucose (HG). Our results showed AU inhibited testicular structural destruction, restored disruption of BTB and improved abnormal spermatogenic function in diabetic mice. Consistent with in vivo results, HG induced decreased transcellular resistance and increased permeability in SCs monolayers, while AU exposure reverses this trend. Meanwhile, reduced expression of Zonula occludin-1(ZO-1) and Connexin43(Cx43) in testicular tissue diabetic mice and HG-induced SCs was prominently reversed via AU treatment. Mechanistic studies suggested a high affinity interaction between AU and c-Src protein was identified based on molecular docking, and the activation of c-Src was significantly inhibited in AU treatment. Furthermore, AU significantly increased the expression of Cx43 and ZO-1 proteins HG-induced SCs, which can be further enhanced in gene-silenced c-Src cells to some extent. Our results suggested that AU ameliorated disruption of BTB and spermatogenesis dysfunction in diabetic mice via inactivating c-Src to stabilize cell junction integrity.

7.
Lab Chip ; 23(1): 125-135, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36477690

RESUMO

Real-time image-based sorting of target cells in a precisely indexed manner is desirable for sequencing or cultivating individual human or microbial cells directly from clinical or environmental samples; however, the versatility of existing methods is limited as they are usually not broadly applicable to all cell sizes. Here, an optical tweezer-assisted pool-screening and single-cell isolation (OPSI) system is established for precise, indexed isolation of individual bacterial, yeast or human-cancer cells. A controllable static flow field that acts as a cell pool is achieved in a microfluidics chip, to enable precise and ready screening of cells of 1 to 40 µm in size by bright-field, fluorescence, or Raman imaging. The target cell is then captured by a 1064 nm optical tweezer and deposited as one-cell-harboring nanoliter microdroplets in a one-cell-one-tube manner. For bacterial, yeast and human cells, OPSI achieves a >99.7% target-cell sorting purity and a 10-fold elevated speed of 10-20 cells per min. Moreover, OPSI-based one-cell RNA-seq of human cancer cells yields high quality and reproducible single-cell transcriptome profiles. The versatility, facileness, flexibility, modularized design, and low cost of OPSI suggest its broad applications for image-based sorting of target cells.


Assuntos
Pinças Ópticas , Saccharomyces cerevisiae , Humanos , Separação Celular/métodos , Microfluídica/métodos , Transcriptoma
8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555118

RESUMO

Ever-increasing consumer demand for sea cucumbers mainly leads to huge damage to wild sea cucumber resources, including Stichopus monotuberculatus, which in turn exerts negative impacts on marine environments due to the lack of ecological functions performed by sea cucumbers. Aquaculture of sea cucumbers is an effective way to meet consumer demand and restore their resources. Unsynchronous growth is a prominent problem in the aquaculture of sea cucumbers which has concealed unelucidated molecular mechanisms until now. In this study, we carried out an integrative analysis of transcriptomics and metabolomics on fast-growing (SMF) and slow-growing (SMS) groups of S. monotuberculatus cultured in the same environmental conditions. The results revealed that a total of 2054 significantly differentially expressed genes (DEGs) were identified, which are mainly involved in fat digestion and absorption, histidine metabolism, arachidonic acid metabolism, and glutathione metabolism. 368 differential metabolites (DMs) were screened out between the SMF group and the SMS group; these metabolites are mainly involved in glycerophospholipid metabolism, purine metabolism, biosynthesis of unsaturated fatty acids, pyrimidine metabolism, arachidonic acid metabolism, and other metabolic pathways. The integrative analysis of transcriptomics and metabolomics of S. monotuberculatus suggested that the SMF group had a higher capacity for lipid metabolism and protein synthesis, and had a more frequent occurrence of apoptosis events, which are likely to be related to coping with environmental stresses. The results of this study provide potential values for the aquaculture of sea cucumbers which may promote their resource enhancement.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/metabolismo , Pepinos-do-Mar/genética , Transcriptoma , Metabolômica , Ácidos Araquidônicos/metabolismo
9.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557993

RESUMO

Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications. As one of the most important post-translational modifications, glycosylation has been shown to exert positive effects on many properties of proteins, including molecular stability, and pharmacodynamic and pharmacokinetic characteristics. Glycoengineering, which involves changing the glycosylation patterns of proteins, is therefore expected to be an effective means of overcoming the problems of therapeutic proteins. In this review, we summarize recent efforts and advances in the glycoengineering of erythropoietin and IgG monoclonal antibodies, with the goals of illustrating the importance of this strategy in improving the performance of therapeutic proteins and providing a brief overview of how glycoengineering is applied to protein-based drugs.


Assuntos
Anticorpos Monoclonais , Engenharia de Proteínas , Glicosilação , Anticorpos Monoclonais/metabolismo , Processamento de Proteína Pós-Traducional , Imunoglobulina G/química , Polissacarídeos/metabolismo
10.
Front Plant Sci ; 13: 1021576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420028

RESUMO

Lilium is a popular cut flower that is highly favored by consumers due to its snowy white color and strong fragrance, which originates from the release of monoterpenes. However, the underlying molecular mechanism of monoterpene synthesis remains poorly understood. In this study, the content of three main monoterpenes (linalool, ocimene, and myrcene) was examined in Lilium 'Siberia', and RNA sequencing of the 11 stages of flower development was conducted. The biosynthesis of the three monoterpenes increased with flower development, reaching their peak levels at the full flowering stage. Transcriptome data revealed 257,140 unigenes, with an average size of 794 bp, from which 43,934 differentially expressed genes were identified and enriched in the KEGG pathways partly involved in plant hormone signal transduction and monoterpenoid biosynthesis. Furthermore, the essential factor LiMYB305 was identified by WGCNA after the release of the flower fragrance. The transient silencing of LiMYB305 in petals using VIGS technology showed that the mRNA expression levels of LiLiS, LiOcS, and LiMyS were significantly downregulated and that the release of linalool, ocimene, and myrcene had decreased significantly. Y1H, LUC, and EMSA experiments revealed that LiMYB305 directly bound and activated the LiOcS promoter to increase the synthesis of monoterpenes. Taken together, these results provide insight into the molecular mechanism of monoterpene synthesis and provide valuable information to investigate the formation of the flower fragrance in Lilium.

11.
Med Sci Monit ; 28: e937878, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324246

RESUMO

BACKGROUND We aimed to evaluate the association between postoperative nadir hematocrit (Hct) and severe acute kidney injury (AKI) in patients undergoing off-pump coronary artery bypass graft (OPCABG) surgery. MATERIAL AND METHODS Data of patients who received OPCABG were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. A generalized additive model was applied to explore the relationship between nadir Hct and severe AKI. Patients were divided into 4 groups by quartiles of postoperative nadir Hct, with the lowest group (Hct <25%) as reference. We conducted multivariate logistic regression models to calculate adjusted odds ratios (OR) and 95% CI and evaluate trend among the 4 groups. RESULTS In total, 1783 OPCABG patients were included. A nonlinear association between nadir Hct and severe AKI was identified. After adjusting for potential confounders, nadir Hct was negatively associated with risk of severe AKI when Hct was less than 31%; there was no statistical significance between highest Hct group (Hct ≥31%) and control group (Hct <25%; P>0.05). Tests for trend were significant (P<0.05). Subgroup analyses showed each 1% increase in postoperative nadir Hct was associated with a 23% decrease in risk of severe AKI (OR, 0.77; P=0.002) in lower BMI group (<30 kg/m²). CONCLUSIONS The association between postoperative nadir Hct and severe AKI in patients after OPCABG was nonlinear. Lower nadir Hct may be associated with increased risk of severe AKI when Hct values are less than 31%. However, no statistical significance was found between the highest Hct group and control group.


Assuntos
Injúria Renal Aguda , Ponte de Artéria Coronária sem Circulação Extracorpórea , Humanos , Ponte de Artéria Coronária sem Circulação Extracorpórea/efeitos adversos , Hematócrito , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Injúria Renal Aguda/etiologia , Cuidados Críticos , Fatores de Risco
12.
Ying Yong Sheng Tai Xue Bao ; 33(11): 3137-3145, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384848

RESUMO

Under the context of frequent flood disasters in China, stormwater management practices such as sponge cities can play a role in flood mitigation and improve the 'resilience' of cities to flood. Resilient city is a concept related with adaptation to disasters, which is increasingly applied to stormwater and flood risk management in some countries. Based on the theory of resilience, we used the scientific metrological analysis tool CiteSpace to review the actualities of Chinese research on rainfall flood, analyzed the hot spots and related technologies of stormwater management from three aspects including ecology, engineering and society of stormwater resilience. Results showed the shortcomings in cross-sectoral stormwater management, and water regulation and storage management of land use at different scales from region to block. We proposed that 'ecology-engineering-society' should be set as the core to establish an adaptive and resilient stormwater management system that offers service to 'region-city-block' with the support of multi-technology integration in the future.


Assuntos
Desastres , Inundações , Cidades , Ecologia , Chuva
13.
Biomed Res Int ; 2022: 5610317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345357

RESUMO

Background: The present study is aimed at identifying the differentially expressed genes (DEGs) and relevant biological processes and pathways associated with epicardial adipose tissue (EAT) from patients with coronary artery disease (CAD). We also explored potential biomarkers using two machine-learning algorithms and calculated the immune cell infiltration in EAT. Materials and Methods: Three datasets (GSE120774, GSE64554, and GSE24425) were obtained from the Gene Expression Omnibus (GEO) database. The GSE120774 dataset was used to evaluate DEGs between EAT of CAD patients and the control group. Functional enrichment analyses were conducted to study associated biological functions and mechanisms using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA). After this, the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) were performed to identify the feature genes related to CAD. The expression level of the feature genes was validated in GSE64554 and GSE24425. Finally, we calculated the immune cell infiltration and evaluated the correlation between the feature genes and immune cells using CIBERSORT. Results: We identified a total of 130 upregulated and 107 downregulated genes in GSE120774. Functional enrichment analysis revealed that DEGs are associated with several pathways, including the calcium signaling pathway, complement and coagulation cascades, ferroptosis, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and regulation of lipolysis in adipocytes. TCF21, CDH19, XG, and NNAT were identified as feature genes and validated in the GSE64554 and GSE24425 datasets. Immune cell infiltration analysis showed plasma cells are significantly more numerous in EAT than in the control group (p = 0.001), whereas macrophage M0 (p = 0.024) and resting mast cells (p = 0.036) were significantly less numerous. TCF21, CDH19, XG, and NNAT were correlated with immune cells, including plasma cells, M0 macrophages, and resting mast cells. Conclusion: TCF21, CDH19, XG, and NNAT might serve as feature genes for CAD, providing new insights for future research on the pathogenesis of cardiovascular diseases.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Ontologia Genética , Biomarcadores/metabolismo , Tecido Adiposo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
14.
Ecotoxicol Environ Saf ; 247: 114256, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327784

RESUMO

Preeclampsia, defined as a hypertensive disorder during pregnancy, is a major cause of maternal and fetal mortality. Observational studies have shown that the exposure of per- and polyfluoroalkyl substances, such as perfluorooctane sulfonate (PFOS), is emerging as a significant environmental factor associated with preeclampsia risk. However, epidemiologic evidence is of correlative in nature, and unable to establish a causal relationship. Here, we established an animal model of PFOS-induced preeclampsia to explore the molecular mechanism of PFOS in placental trophoblast. In the mouse model, PFOS exposure by gavage at a dose of 10 mg/kg/d from embryonic day 7.5-16.5 was sufficient to induce preeclampsia-like symptoms such as hypertension, proteinuria, and renal glomerular endotheliosis, accompanied with placental abnormal stromal collagen deposition. In-vitro experiments of JEG-3 cells, PFOS exposure impaired trophoblast motility including the compromised abilities of migration, invasion and vascularization. Mechanistically, these pathological effects on cells resulted from SLC25A5-mediated mitochondrial damages, characterized by excessive ROS generation, decreased ATP production and mitochondrial membrane potential loss, and accompanied by the activation of p38 MAPK and JNK signaling pathways. This pioneering study provided biological plausibility to the causality verified by the animal model and the in vitro experiments, which indicates that PFOS exposure may cause preeclampsia during pregnancy via impairing trophoblast mitochondria.


Assuntos
Hipertensão , Pré-Eclâmpsia , Feminino , Gravidez , Camundongos , Animais , Humanos , Trofoblastos , Pré-Eclâmpsia/induzido quimicamente , Síndrome , Linhagem Celular Tumoral , Placenta , Mitocôndrias , Modelos Animais de Doenças
15.
J Chem Neuroanat ; 127: 102201, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36435434

RESUMO

Piper nigrum L. and P. longum L. are widely used in various medicinal formulations. The dichloromethane fraction of Piper nigrum L. and P. longum L. (DF) can prevent cerebral ischemic injury although the underlying mechanisms are obscure. The aim of this study was to evaluate the potential neuroprotective effects of DF on a rat model of permanent middle cerebral artery occlusion (pMCAO) and assess the molecular mechanisms. Animals were administered with DF (50, 100, and 150 mg/kg) or nimodipine (12 mg/kg) 6 h after pMCAO for 14 consecutive days via intragastric gavage. In the vitro this study identified that DF reduced neurological severity scores and improved survival rate. Results showed that DF markedly inhibited the percentage of apoptotic cells as well as neuronal autophagy and mitigated the overall neuronal and vascular damage in the ischemic region. Western blot testing showed that at the molecular level, DF significantly suppressed ischemia-induced activated expression of LC3, Beclin1, Atg12, and Atg5. Overall, our study indicated that DF attenuated neuronal autophagy by suppressing the expression of autophagy-related proteins to generate neuroprotection effect for ischemic stroke.

16.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361820

RESUMO

The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10-3 and 0.391 × 10-3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Secas , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo
17.
Cell Mol Neurobiol ; 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239833

RESUMO

The dorsal hippocampus is involved in behavioral avoidance regulation. It is unclear how experiences such as the neonatal stress of maternal deprivation (MD) and post-weaning environmental enrichment (EE) affect avoidance behavior and the dorsal hippocampal parameters, including neuronal morphology, corticotrophin-releasing hormone (CRH) signaling, and oxytocin receptor (OTR) level. In male BALB/c mice, we found that MD impaired avoidance behavior in the step-on test compared to non-MD and EE rearing conditions could alleviate that partially. MD increased neuronal branches in the CA1 but decreased synaptic connection levels in the CA2, CA3, and DG. Meanwhile, MD increased the CA1's OTR levels, which negatively correlated with nucleus densities. MD also increased the CA1's and CA2's CRH levels, which positively correlated with CRHR1 levels. However, MD statistically elevated the CA3's CRH receptor 1 (CRHR1) levels, which negatively correlated with nucleus densities and, probably, synaptic connection levels in the CA3. The additive effects of MD and EE maintained similar CRH levels and CRHR1 levels as well as OTR levels in the hippocampal areas as the additive of non-MD and non-EE. However, the presence of MD and EE still decreased the CA1's neuronal branches and the CA2's and DG's synaptic connection levels. The study illustrates how MD and EE affect avoidance behaviors, hippocampal neuron morphology, and CRH and OTR levels. The results indicate that the late-life environmental improvement partially restores the alterations in dorsal hippocampal areas induced by early life stress.

18.
BMC Plant Biol ; 22(1): 500, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36284279

RESUMO

BACKGROUND: Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS: According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION: Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.


Assuntos
Oryza , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Resposta ao Choque Frio/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transcriptoma
19.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298150

RESUMO

The traditional pointer instrument recognition scheme is implemented in three steps, which is cumbersome and inefficient. So it is difficult to apply to the industrial production of real-time monitoring. Based on the improvement of the CSL coding method and the setting of the pre-cache mechanism, an intelligent reading recognition technology of the YOLOv5 pointer instrument is proposed in this paper, which realizes the rapid positioning and reading recognition of the pointer instrument. The problem of angle interaction in rotating target detection is eliminated, the complexity of image preprocessing is avoided, and the problems of poor adaptability of Hough detection are solved in this strategy. The experimental results show that compared with the traditional algorithm, the algorithm in this paper can effectively identify the angle of the pointer instrument, has high detection efficiency and strong adaptability, and has broad application prospects.

20.
Sci Rep ; 12(1): 17243, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241640

RESUMO

This study determined the Water Production Function (WPF) and Optimal Irrigation Schedule (OIS) for rice (Oryza sativa L.) cultivated with drip irrigation under plastic film. Six different field capacity levels were established, 100% (W1), 90% (W2), 80% (W3), 70% (W4) and 60% (W5). The results showed that, the rice growth and yields and quality were significantly affected by the different irrigation treatments. The rice height and yield decreased from W1to W4, the W2 is the highest yield. The lower the amount of irrigation water applied was, the higher the Irrigation Water Use Efficiency values were. A WPF model was established for this cropping system, and the water sensitivity indices calculated by the mathematical model showed that the crop water sensitivity decreased in the order booting stage > flowering stage > tillering stage > filling stage. Based on this result, the OIS determined by the dynamic solution of several models was as follows: the optimal irrigation levels were 750 m3 ha-1 in the tillering stage, 2125 m3 ha-1 in the jointing-booting stage, 1050 m3 ha-1 in the heading-flowering stage and 325 m3 ha-1 in the milk stage. The WPF and OIS developed in this study provide a theoretical basis for the implementation of rice cultivation with drip irrigation under plastic film in arid regions of China.


Assuntos
Oryza , Água , Irrigação Agrícola/métodos , Biomassa , China , Plásticos , Solo , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...