Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(44): 14808-14814, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820096

RESUMO

Manipulating the molecular orbital properties of excited states and the subsequent relaxation processes can greatly alter the emission behaviors of luminophores. Herein we report a vivid example of this, with luminescence conversion from thermally activated delayed fluorescence (TADF) to ultralong room-temperature phosphorescence (URTP) via a facile substituent effect on a rigid benzothiazino phenothiazine tetraoxide (BTPO) core. Pristine BTPO with multiple heteroatoms shows obvious intramolecular charge transfer (ICT) excited states with small exchange energy, featuring TADF. Via delicately functionalizing the BTPO core with peripheral moieties, the excited states of the BTPO derivatives become a hybridized local and charge transfer (HLCT) state in the S1 state and a local excitation (LE) dominated HLCT state in the T1 state, with enlarged energy bandgaps. Upon dispersion in a polymer matrix, the BTPO derivatives exhibit a persistent bright green afterglow with long lifetimes of up to 822 ms and decent quantum yields of up to 11.6%.

2.
Nat Commun ; 12(1): 5889, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620849

RESUMO

Most organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship.

4.
Materials (Basel) ; 14(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34639997

RESUMO

Covalent organic frameworks (COFs) are highly porous and crystalline polymeric materials, constructed by covalent bonds and extending in two or threedimensions. After the discovery of the first COF materials in 2005 by Yaghi et al., COFs have experienced exciting progress and exhibitedtheirpromising potential applications invarious fields, such as gas adsorption and separation, energy storage, optoelectronics, sensing and catalysis. Because of their tunablestructures, abundant, regular and customizable pores in addition to large specific surface area, COFs can harvest ultraviolet, visible and near-infrared photons, adsorb a large amount of substrates in internal structures and initiate surface redox reactions to act as effective organic photocatalysts for water splitting, CO2 reduction, organic transformations and pollutant degradation. In this review, we will discuss COF photocatalysts for the degradation of aqueous pollutants. The state-of-the-art paragon examples in this research area will be discussed according to the different structural type of COF photocatalysts. The degradation mechanism will be emphasized. Furthermore, the future development direction, challenges required to be overcome and the perspective in this field will be summarized in the conclusion.

5.
Mater Horiz ; 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545892

RESUMO

By combining aggregation-induced emission (AIE) effect and a triplet-triplet upconversion (TTU) process, a blue emitter with excellent photoluminescence quantum efficiency and high upconversion efficiency in the film state is developed, from which a highly efficient non-doped blue TTU organic light-emitting diode (TTU-OLED) was realized.

6.
Angew Chem Int Ed Engl ; 60(41): 22241-22247, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387938

RESUMO

Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y =0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.

7.
Angew Chem Int Ed Engl ; 60(44): 23771-23776, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34405502

RESUMO

Thermally activated delayed fluorescence (TADF) materials with through-space charge transfers (CT) have attracted particularly interest recently. However, the slow reverse intersystem crossing (RISC) and radiative decay always limit their electroluminescence performances. Herein, TADF molecules with ortho-linked multiple donors-acceptor (ortho-Dn -A) motif are developed to create near-degenerate excited states for the reinforcement of spin-orbit coupling. The incorporation of both through-bond and through-space CT enlarges oscillator strength. The optimal ortho-D3 -A compound exhibits a photoluminescence quantum yield of ca. 100 %, a high RISC rate of 2.57×106  s-1 and a high radiative decay rate of 1.00×107  s-1 simultaneously. With this compound as the sensitizer, a TADF-sensitized-fluorescent organic light-emitting diode shows a maximum external quantum efficiency of 31.6 % with an ultrapure green Commission Internationale de L'Eclairage y coordinate value of 0.69.

8.
Angew Chem Int Ed Engl ; 60(44): 23635-23640, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34459540

RESUMO

Tailor-made red thermally activated delayed fluorescence (TADF) molecules comprised of an electron-withdrawing pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile core and various electron-donating triarylamines are developed. They can form intramolecular hydrogen-bonding, which is conducive to improving emission efficiency and promoting horizontal orientation and show near infrared (NIR) emissions (692-710 nm) in neat films and red delayed fluorescence (606-630 nm) with high photoluminescence quantum yields (73-90%) in doped films. They prefer horizontal orientation with large horizontal dipole ratios in films, rendering high optical out-coupling factors (0.39-0.41). Their non-doped OLEDs exhibit NIR lights (716-748 nm) with maximum external quantum efficiencies (ηext,max ) of 1.0-1.9%. And their doped OLEDs radiate red lights (606-648 nm) and achieve record-beating ηext,max of up to 31.5%. These new red TADF materials should have great potentials in display and lighting devices.

9.
Org Biomol Chem ; 19(32): 7085, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34355728

RESUMO

Correction for 'A powerful azomethine ylide route mediated by TiO2 photocatalysis for the preparation of polysubstituted imidazolidines' by Anan Liu et al., Org. Biomol. Chem., 2021, 19, 2192-2197, DOI: .

10.
Angew Chem Int Ed Engl ; 60(27): 14846-14851, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871909

RESUMO

Herein, we report a deep-red TADF emitter pCNQ-TPA, composed of quinoxaline-5,8-dicarbonitrile (pCNQ) acceptor and triphenylamine (TPA) donor. pCNQ-TPA supported its OLED with desired CIE coordinates of (0.69, 0.31) and the record maximum external quantum efficiency of 30.3 %, which is the best red TADF diode with Rec.2020 gamut for UHDTV. It is showed that through tuning pCNQ-TPA doping concentration, intra- and inter-molecular charge transfer are balanced to synchronously improve emission color saturation and TADF radiation, and remedy aggregation-induced quenching, rendering photoluminescence quantum yield (PLQY) reaching 90 % for deep-red emission peaked at ≈690 nm. Quasi-planar structure further endows pCNQ-TPA with an improved horizontal ratio of emitting dipole orientation, which increases light out-coupling ratio to 0.34 for achieving the state-of-the-art device efficiencies.

11.
Top Curr Chem (Cham) ; 379(3): 16, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725239

RESUMO

Aggregation induced emission (AIE) luminogens (AIEgens) have great potential in the field of organic optoelectronic devices because of their highly efficient emission property in solid state. For example, high efficiency organic light-emitting diodes (OLEDs) based on AIEgens have been developed successfully. Some AIEgens also show good photovoltaic response properties for organic solar cells (OSCs) and organic photodetectors (OPDs), and lasing properties for optically pumping organic lasers (OLs). The review will cover the status and prospects of AIEgens in OLEDs, OLs, OSCs and OPDs. It is expected that AIEgens will become an important organic optoelectronic material system in the future.

12.
Org Biomol Chem ; 19(10): 2192-2197, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33625413

RESUMO

Lewis- and Brønsted-acid catalyzed 1,3-dipolar cycloaddition between azomethine ylides and unsaturated compounds is an important strategy to construct five-membered N-heterocycles. However, such a catalytic route usually demands substrates with an electron-withdrawing group (EWG) to facilitate the reactivity. Herein, we report a TiO2 photocatalysis strategy that can conveniently prepare five-membered N-heterocyclic imidazolidines from a common imine (N-benzylidenebenzylamine) and alcohols along the route of 1,3-dipolaron azomethine ylide but without pre-installed EWG substituents on the substrates. Our EPR results uncovered the previously unknown mutual interdependence between an azomethine ylide and TiO2 photo-induced hvb+/ecb- pair. This transformation exhibited a broad scope with 21 successful examples and could be scaled up to the gram level.

13.
Adv Mater ; 33(11): e2006953, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33565188

RESUMO

Aggregation-induced emission (AIE) materials are attractive for achieving highly efficient nondoped organic light-emitting diodes (OLEDs) owing to their strong luminescence in the solid state. However, the electroluminescence efficiency of most AIE-based OLEDs remains low owing to the waste of triplet excitons. Here, using theoretical calculations, photophysical dynamics, and magnetoluminescence measurements, the spin conversion process is demonstrated between the high-lying triplet state (Tn ) and the lowest excited singlet state (S1 ) in AIE materials. Moreover, the relative positions of Tn (n < 4) and S1 are shown to have a significant impact on the spin-conversion efficiency, thus influencing the harvesting of triplet excitons and the device efficiency. Finally, by selecting an upconversion material with an appropriate energy level for further utilizing the triplet excitons, a deep-blue fluorescent OLED with CIE coordinates of (0.15, 0.08), a maximum external quantum efficiency of 10.2%, low efficiency roll-off, and a high brightness of 16817 cd m-2 is developed. This is one of the most efficient deep-blue OLEDs based on AIE materials reported so far. These findings also provide new insights into the design of more efficient AIE molecules and corresponding OLEDs by managing high-lying triplet excitons.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118890, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32898727

RESUMO

A new NIR fluorescent probe for detection of ONOO- has been developed, which possesses a large Stokes shift, good selectivity and low cytotoxicity. This NR-ONOO probe exhibits a strong turn-on near-infrared fluorescence response toward ONOO- ion under excitation at 560 nm and has been successfully applied in detecting ONOO- in living HeLa cells.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Compostos de Bifenilo , Células HeLa , Humanos
15.
Proc Natl Acad Sci U S A ; 117(42): 25991-25998, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020292

RESUMO

Graphene has emerged as an attractive candidate for flexible transparent electrode (FTE) for a new generation of flexible optoelectronics. Despite tremendous potential and broad earlier interest, the promise of graphene FTE has been plagued by the intrinsic trade-off between electrical conductance and transparency with a figure of merit (σDC/σOp) considerably lower than that of the state-of-the-art ITO electrodes (σDC/σOp <123 for graphene vs. ∼240 for ITO). Here we report a synergistic electrical/optical modulation strategy to simultaneously boost the conductance and transparency. We show that a tetrakis(pentafluorophenyl)boric acid (HTB) coating can function as highly effective hole doping layer to increase the conductance of monolayer graphene by sevenfold and at the same time as an anti-reflective layer to boost the visible transmittance to 98.8%. Such simultaneous improvement in conductance and transparency breaks previous limit in graphene FTEs and yields an unprecedented figure of merit (σDC/σOp ∼323) that rivals the best commercial ITO electrode. Using the tailored monolayer graphene as the flexible anode, we further demonstrate high-performance green organic light-emitting diodes (OLEDs) with the maximum current, power and external quantum efficiencies (111.4 cd A-1, 124.9 lm W-1 and 29.7%) outperforming all comparable flexible OLEDs and surpassing that with standard rigid ITO by 43%. This study defines a straightforward pathway to tailor optoelectronic properties of monolayer graphene and to fully capture their potential as a generational FTE for flexible optoelectronics.

16.
ACS Appl Mater Interfaces ; 12(41): 46366-46372, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955848

RESUMO

High emission efficiency and finite molecular conjugation in the aggregate state are two desirable features in violet-blue emitters. Aggregation-induced emission luminogens (AIEgens) have emerged as promising luminescent materials that offer these features. Herein, we report the design and synthesis of a group of violet-blue tetraphenylbenzene-based AIEgens with photoluminescence quantum yields over 98% in their film states. When utilizing these AIEgens as nondoped emitting layers, the fabricated organic light-emitting diode exhibits a maximum external quantum efficiency of 4.34% with Commission Internationale de L'Eclairage (CIE) coordinates of (0.159, 0.035), which is amenable to the next-generation ultrahigh-definition television (UHDTV) display standard.

17.
ACS Nano ; 14(9): 11420-11430, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32812732

RESUMO

Metal halide perovskites have received much attention for their application in light-emitting diodes (LEDs) in the past several years. Rapid progress has been made in efficient green, red, and near-infrared perovskite LEDs. However, the development of blue perovskite LEDs is still lagging far behind. Here, we report efficient sky-blue perovskite LEDs by rearranging low-dimensional phase distribution in quasi-2D perovskites. We incorporated sodium ions into the mixed-Cl/Br quasi-2D perovskites with phenylethylammonium as the organic spacer and cesium lead halide as the inorganic framework. The inclusion of the sodium ion was found to significantly reduce the formation of the n = 1 phase, which was dominated by nonradiative transition, and increase the formation of other small-n phases for efficient exciton energy transfer. By managing the phase distribution, a maximum external quantum efficiency (EQE) of 11.7% was achieved in the sky-blue perovskite LED, with a stable emission peak at 488 nm. Further optimizing the phase distribution and film morphology with Pb content, we demonstrated the sky-blue devices with the average EQE approaching 10%. This strategy of engineering phase distribution of quasi-2D perovskites with a sodium ion could provide a useful way for the fabrication of high-performance blue perovskite LEDs.

18.
Molecules ; 25(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455943

RESUMO

Covalent organic frameworks (COFs) are a kind of porous crystalline polymeric material. They are constructed by organic module units connected with strong covalent bonds extending in two or three dimensions. COFs possess the advantages of low-density, large specific surface area, high thermal stability, developed pore-structure, long-range order, good crystallinity, and the excellent tunability of the monomer units and the linking reticular chemistry. These features endowed COFs with the ability to be applied in a plethora of applications, ranging from adsorption and separation, sensing, catalysis, optoelectronics, energy storage, mass transport, etc. In this paper, we will review the recent progress of COFs materials applied in photocatalytic CO2 reduction. The state-of-the-art paragon examples and the current challenges will be discussed in detail. The future direction in this research field will be finally outlooked.


Assuntos
Dióxido de Carbono/química , Catálise , Estruturas Metalorgânicas/química , Polímeros/química , Adsorção , Dióxido de Carbono/efeitos da radiação , Luz , Porosidade
19.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422929

RESUMO

The importance of advanced energy-conversion devices such as water electrolysis has manifested dramatically over the past few decades because it is the current mainstay for the generation of green energy. Anodic oxygen evolution reaction (OER) in water splitting is one of the biggest obstacles because of its extremely high kinetic barrier. Conventional OER catalysts are mainly noble-metal oxides represented by IrO2 and RuO2, but these compounds tend to have poor sustainability. The attention on Prussian blue (PB) and its analogs (PBA) in the field of energy conversion systems was concentrated on their open-framework structure, as well as its varied composition comprised of Earth-abundant elements. The unique electronic structure of PBA enables its promising catalytic potential, and it can also be converted into many other talented compounds or structures as a precursor. This undoubtedly provides a new approach for the design of green OER catalysts. This article reviews the recent progress of the application of PBA and its derivatives in OER based on in-depth studies of characterization techniques. The structural design, synthetic strategy, and enhanced electrochemical properties are summarized to provide an outlook for its application in the field of OER. Moreover, due to the similarity of the reaction process of photo-driven electrolysis of water and the former one, the application of PBA in photoelectrolysis is also discussed.


Assuntos
Técnicas Eletroquímicas , Elétrons , Ferrocianetos/química , Química Verde , Oxigênio/química , Água/química , Catálise , Fontes de Energia Elétrica , Eletrodos , Eletrólise , Humanos , Oxirredução
20.
Materials (Basel) ; 13(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276332

RESUMO

Carbon gels are a kind of porous organic polymer, which play pivotal roles in electrode, supercapacitor, hydrogen storage, and catalysis. Carbon gels are commonly prepared by the condensation of resorcinol and formaldehyde. The as-prepared polymers are further aged and sintered at a high temperature in an inert atmosphere to form cross-linked and intertwined porous structures. Owing to its large specific area and narrow pore size distribution, this kind of material is very appropriate for mass transfer, substrate absorption, and product desorption from the pores. In recent years, carbon gels have been discovered to function as effective hybrid materials with TiO2 for photocatalytic applications. They could act as efficient deep-traps for photo-induced holes, which decreases the recombination probability of photo-induced carriers and lengthens their lifetime. In this mini-review, we will discuss the state-of-the-art paragon examples of carbon gels/TiO2 composite materials applied in photo(electro)catalysis. The major challenges and gaps of its application in this field will also be emphasized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...