Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 424(Pt B): 127472, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34655881

RESUMO

As(III) removal from groundwaters is challenging because of its neutral charge and low surface affinity under circumneutral pH conditions. In this work, we investigate the influence of Ca2+ and Mg2+ on the removal of As(III) by a redox active polyvinylferrocene (PVF) functionalized electrode in a modified double potential step chronoamperometry (DPSC) setup. In the absence of divalent cations, nearly 90% As(III) removal is achieved over ten continuous cycles by single-pass DPSC, even in the presence of competing anions, however the presence of divalent cations at concentrations ≥ 1.25 mM significantly inhibits As(III) removal. The divalent cations enhance arsenic removal in the first (removal) step but suppress electrode regeneration in the 2nd step. Our results suggest that Ca2+/Mg2+ either acts as a bridge between the electrode surface and As anions or the sorption of Ca2+/Mg2+ increases the positive charge on the electrode surface thereby facilitating As(V) sorption. We show that effective electrode regeneration can be achieved using an NaOH wash however the overall complexity of the process increases. Overall, we conclude that the influence of divalent cations on As removal by electro-sorption processes needs to be taken into consideration for application of this technology for real groundwater treatment.

2.
Bioresour Technol ; : 126139, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34662738

RESUMO

The occurrence of micropollutants (MPs) in water and wastewater imposes potential risks on ecological security and human health. Membrane biofilm reactor (MBfR), as an emerging technology, has attracted much attention for MPs removal from water and wastewater. The review aims to consolidate the recent advances in membrane biofilm reactor for MPs removal from the standpoint of fundamentals, removal performance and microbial communities. First, the configuration and working principles of MBfRs are reviewed prior to the discussion of the current status of the system. Thereafter, a comprehensive review of the MBfR performance for MPs elimination based on literature database is presented. Key information on the microbial communities that are of great significance for the removal performance is then synthesized. Perspectives on the future research needs are also provided in this review to ensure the development of MBfRs for more cost-effective elimination of MPs from water and wastewater.

3.
Environ Sci Technol ; 55(19): 13274-13285, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34525801

RESUMO

In this study, copper aluminum layered hydroxides (Cu-Al LDHs) and copper oxide (CuO) were utilized as catalysts for heterogeneous catalytic ozonation (HCO). Target compounds oxalate and formate were used with removal by adsorption and oxidation quantified to elucidate the role of the catalyst in contaminant removal. Oxidation of oxalate mostly occurred on the catalyst surface via interaction of surface oxalate complexes with surface-located oxidants. In contrast, the oxidation of formate occurred in the bulk solution as well as on the surface of the catalyst. Measurement of O3 decay kinetics coupled with fluorescence microscopy image analysis corresponding to 7-hydroxycoumarin formation indicates that while surface hydroxyl groups in Cu-Al LDHs facilitate slow decay of O3 resulting in the formation of hydroxyl radicals on the surface, CuO rapidly transforms O3 into surface-located hydroxyl radicals and/or other oxidants. Futile consumption of surface-located oxidants via interaction with the catalyst surface was minimal for Cu-Al-LDHs; however, it becomes significant in the presence of higher CuO dosages. A mechanistic kinetic model has been developed which adequately describes the experimental results obtained and can be used to optimize the process conditions for the application of HCO.

4.
Water Res ; 203: 117498, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371229

RESUMO

A novel design for a flow-electrode capacitive deionization (FCDI) system consisting of tubular electrodes in a shell and tube heat exchanger configuration is proposed. Each electrode consists of a metallic mesh current collector along the inner circumference of a tubular ion-exchange membrane. This tubular FCDI design is suitable for scale-up as it consists of easily manufactured components which can be assembled in an array. An apparatus with 4 tubular electrodes with a large effective area (202.3 cm2) was constructed and shown to provide a high net salt (NaCl) removal rate (0.15 mg s-1 at 1.2 V applied voltage and ∼2000 mg L-1 influent total dissolved solids concentration). A computational fluid dynamics (CFD) model incorporating ion migration and transport mechanisms was developed to simulate the ion concentration and electrical potential profiles in the water channel. The results of CFD modelling highlighted the need to maximize regions of both high potential gradient and high hydraulic flow in order to achieve optimal salt removal. In brief, this study presents a new design approach for FCDI scale-up and provides a computational tool for optimization of this design and future innovative FCDI designs.


Assuntos
Purificação da Água , Adsorção , Eletricidade , Eletrodos , Troca Iônica , Cloreto de Sódio
5.
Water Res ; 203: 117522, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384947

RESUMO

Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.


Assuntos
Purificação da Água , Adsorção , Eletrodos , Troca Iônica , Cloreto de Sódio
6.
Water Res ; 203: 117547, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412015

RESUMO

In flow anode systems, surface-bound hydroxyl radicals (*OH) are generated at the solid-liquid interface of suspended particulate charge carriers at potentials well below that required for oxygen evolution as a result of water splitting. While these surface-bound radicals are powerful indiscriminant oxidants that often lead to complete mineralization of organic pollutants, the more selective process of direct electron transfer (DET) may also occur at the particle electrode interfaces and play a critical role in the degradation of some contaminants. In this study, we investigated DET processes in a flow anode system in which carbon black was utilized as the flow anode material and Pt, Ti, IrRu and IrTa meshes were used as the current collectors. The results indicate that the use of a carbon black flow anode enhanced the DET rate by 20 times at 1.0 V vs Ag/AgCl compared to the control experiment with no carbon black particles present. Low solution conductivity had a more obvious negative effect on the DET process (compared to *OH mediated oxidation) due to the high potential drop and inhibition of mass transfer processes at the solid-liquid interfaces of the anode particles. The DET rates were dependent on the particular anode current collector used (i.e., Ti, IrRu, IrTa or Pt mesh) with differences in rates ascribed to the electron transfer resistance of the current collectors in the flow anode system. Detailed investigation of the degradation of phenol in a flow anode system revealed that this widely studied contaminant could be degraded with an energy consumption of 3.08 kWh m-3, a value substantially lower than that required with other techniques. Results of this study provide a better understanding of the DET mechanism at the solid-solid and solid-liquid interfaces with these insights expected to benefit the design of flow anode materials and current collectors and lead to the improvement in performance of flow anode systems.


Assuntos
Fenol , Poluentes Químicos da Água , Eletrodos , Elétrons , Oxirredução , Fenóis , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 55(15): 10695-10703, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34132087

RESUMO

The contamination of water resources by nitrate is a major problem. Herein, we report a mechanically flexible 2D-MXene (Ti3C2Tx) membrane with multilayered nanofluidic channels for a selective electrochemical reduction of nitrate to nitrogen gas (N2). At a low applied potential of -0.8 V (vs Ag/AgCl), the MXene electrochemical membrane was found to exhibit high selectivity for NO3- reduction to N2 (82.8%) due to a relatively low desorption energy barrier for the release of adsorbed N2 (*N2) compared to that for the adsorbed NH3 (*NH3) based on density functional theory (DFT) calculations. Long-term use of the MXene membrane for treating 10 mg-NO3-N L-1 in water was found to have a high faradic efficiency of 72.6% for NO3- reduction to N2 at a very low electrical cost of 0.28 kWh m-3. Results of theoretical calculations and experimental results showed that defects on the MXene nanosheet surfaces played an important role in achieving high activity, primarily at the low-coordinated Ti sites. Water flowing through the MXene nanosheets facilitated the mass transfer of nitrate onto the low-coordinated Ti sites with this enhancement of particular importance under cathodic polarization of the MXene membrane. This study provides insight into the tailoring of nanoengineered materials for practical application in water treatment and environmental remediation.


Assuntos
Nitratos , Purificação da Água , Eletrodos , Óxidos de Nitrogênio , Titânio
8.
Water Res ; 200: 117259, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34058481

RESUMO

Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising water treatment alternative but major breakthroughs are still needed in order for EAOPs to be competitive with traditional treatment technologies in terms of energy cost. Most existing studies have been conducted at high potentials to generate the powerful hydroxyl radical oxidant (aqueous •OH). While adsorbed hydroxyl radicals (OH*) may form at a much lower energy cost, their possible utilization is limited due to the poor mass transfer of this highly reactive species on solid electrodes. In this report, we describe a novel flow anode system using 4-16 µm Magnéli phase titanium suboxide particles as the anode material which enables the generation of a high steady state •OH concentration (5.4 × 10-12 mol m-2) at only 1.5 V (vs SHE) in a dilute electrolyte (5 mM KH2PO4). The energy cost of removal per order of selected water contaminants (tetracycline and orange II in this study) using the flow anode is 1.5--6.7 Wh m-3, which is 1 - 4 orders of magnitude lower than that of existing techniques. The anode material used demonstrates great stability with the configuration readily scaled up. The results of this study provide new insight into a high efficiency, low cost water treatment technology for organic contaminant degradation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Radical Hidroxila , Oxirredução , Água
9.
Environ Sci Technol ; 55(8): 4243-4267, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33724803

RESUMO

With the increasing severity of global water scarcity, a myriad of scientific activities is directed toward advancing brackish water desalination and wastewater remediation technologies. Flow-electrode capacitive deionization (FCDI), a newly developed electrochemically driven ion removal approach combining ion-exchange membranes and flowable particle electrodes, has been actively explored over the past seven years, driven by the possibility of energy-efficient, sustainable, and fully continuous production of high-quality fresh water, as well as flexible management of the particle electrodes and concentrate stream. Here, we provide a comprehensive overview of current advances of this interesting technology with particular attention given to FCDI principles, designs (including cell architecture and electrode and separator options), operational modes (including approaches to management of the flowable electrodes), characterizations and modeling, and environmental applications (including water desalination, resource recovery, and contaminant abatement). Furthermore, we introduce the definitions and performance metrics that should be used so that fair assessments and comparisons can be made between different systems and separation conditions. We then highlight the most pressing challenges (i.e., operation and capital cost, scale-up, and commercialization) in the full-scale application of this technology. We conclude this state-of-the-art review by considering the overall outlook of the technology and discussing areas requiring particular attention in the future.


Assuntos
Purificação da Água , Adsorção , Eletrodos , Troca Iônica , Cloreto de Sódio
10.
Water Res ; 194: 116939, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640752

RESUMO

It is critical to both effectively remove and recover phosphate (P) from wastewater given the wide-ranging environmental (i.e., preventing eutrophication and restoring water quality) and economic (i.e., overcoming P resource scarcity) benefits. More recently, considerable academic effort has been devoted towards harvesting P as vivianite, which can be used as a potential slow-release fertilizer and possible reagent for the manufacture of lithium iron phosphate (LiFePO4), the precursor in fabricating Li-ion secondary batteries. In this study, we propose an innovative P recovery process, in which P is first preconcentrated via a flow-electrode capacitive deionization (FCDI) device followed by immobilization as vivianite crystals in a fluidized bed crystallization (FBC) column. The effects of different operational parameters on FCDI P preconcentration performance and energy consumption are investigated. Results show that 63% of P can be removed and concentrated in the flow-electrode chamber with a reasonable energy requirement under optimal operating conditions. The FBC system resulted in immobilization of ~80% of P as triangular or quadrangular pellets, which were verified to be high-purity vivianite crystals by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and extended X-ray absorption fine structure (EXAFS) spectroscopy. This study provides a pathway for efficient recovery of P as a value-added product (i.e., vivianite) from P-rich wastewaters.


Assuntos
Purificação da Água , Cristalização , Eletrodos , Compostos Ferrosos , Fosfatos
11.
Environ Sci Technol ; 55(1): 655-664, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103901

RESUMO

Heavy metals in industrial wastewaters are typically present as stable metal-organic complexes with their cost-effective treatment remaining a significant challenge. Herein, a self-enhanced decomplexation scenario is developed using an electrochemical membrane filtration (EMF) system for efficient decomplexation and Cu recovery. Using Cu-EDTA as a model pollutant, the EMF system achieved 81.5% decomplexation of the Cu-EDTA complex and 72.4% recovery of Cu at a cell voltage of 3 V. The •OH produced at the anode first attacked Cu-EDTA to produce intermediate Cu-organic complexes that reacted catalytically with the H2O2 generated from the reduction of dissolved oxygen at the cathode to initiate chainlike self-enhanced decomplexation in the EMF system. The decomplexed Cu products were further reduced or precipitated at the cathodic membrane surface thereby achieving efficient Cu recovery. By scavenging H2O2 (excluding self-enhanced decomplexation), the rate of decomplexation decreased from 8.8 × 10-1 to 4.1 × 10-1 h-1, confirming the important role of self-enhanced decomplexation in this system. The energy efficiency of this system is 93.5 g kWh-1 for Cu-EDTA decomplexation and 15.0 g kWh-1 for Cu recovery, which is much higher than that reported in the previous literature (i.e., 7.5 g kWh-1 for decomplexation and 1.2 g kWh-1 for recovery). Our results highlight the potential of using EMF for the cost-effective treatment of industrial wastewaters containing heavy metals.


Assuntos
Peróxido de Hidrogênio , Águas Residuárias , Cobre , Ácido Edético , Oxirredução
12.
Water Res ; 189: 116653, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232816

RESUMO

The recovery of phosphorus (P) from wastewaters is a worthy goal considering the potential environmental and economic benefits. Flow-electrode capacitive deionization (FCDI), which employs flowable carbon electrodes instead of the static electrodes used in conventional CDI, has been demonstrated to be a promising P recovery technology. FCDI outperforms CDI and other competitive technologies in a number of aspects including (i) large salt adsorption capacity and (ii) extremely high water recovery rate. In this study, magnetic (Fe3O4 impregnated) activated carbon particles were prepared and applied as FCDI electrodes. The magnetic carbon electrodes were found to have a strong affinity towards P, facilitating the selective adsorption of P to the magnetic particles through a ligand exhange mechanism. Continuous operation of the FCDI system could be achieved with only three minutes required to separate the electrode particles from the brine stream on application of an external magnetic field. A P-rich stream was produced on regeneration of the exhausted magnetic electrodes using alkali solution. We envision that the use of magnetic carbon enhanced flow-electrodes will pave the way for efficient operation of FCDI as well as the preferential recovery of P.


Assuntos
Fosfatos , Purificação da Água , Adsorção , Eletrodos , Compostos Férricos , Fenômenos Magnéticos
13.
Environ Sci Technol ; 54(19): 12081-12091, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924448

RESUMO

In this work, we investigate selective sorption of arsenic from simulated groundwaters at pH 8 by a redox-active polyvinylferrocene (PVF)-functionalized electrode using a modified double potential step chronoamperometry (DPSC) method. Our results show that effective and sustainable As(III) removal can be achieved at 0 V once the electrode is activated via anodic polarization. During activation, ferrocene (Fc) in PVF is oxidized to the ferrocenium ion (Fc+) with the latter facilitating As(III) sorption and subsequent oxidation as well as As(V) sorption. The high affinity of Fc+ to As and weak attraction to competing anions at 0 V ensure high selectivity of As over Cl-, SO42-, and NO3- at concentrations typical of groundwaters. Following the removal process, efficient regeneration of the electrode is achieved at -1.2 V wherein Fc+ is reduced to Fc thereby facilitating As desorption from the electrode surface. Our results further show that O2 and associated generation of hydrogen peroxide during the regeneration step drive the oxidation of Fc to Fc+, thereby maintaining the constant generation of Fc+ required to achieve As(III) removal in subsequent cycles. Our results show that 91.8 ± 0.6% of As(III) could be selectively removed from simulated groundwater over 10 cycles at an ultralow energy consumption of 0.12 kWh m-3.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Eletrodos , Compostos Ferrosos , Oxirredução , Oxigênio , Polivinil , Poluentes Químicos da Água/análise
14.
Water Res ; 183: 115969, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721703

RESUMO

Frequent occurrence of harmful algal blooms (HABs) and red tides in freshwater and seawater poses serious threats to water treatment and drives the application of membrane-based technologies in algal separation. Despite the high removal efficiency of algal cells and their metabolites (e.g. organic matter and toxins) by membranes, the generation of concentrate and waste streams presents a major challenge. In this paper, we review the scenarios under which membrane-based processes are integrated with algal separation, with particular attention given to (i) drinking water production and desalination at low algal concentrations and (ii) cyanobacteria-laden water treatment/desalination. The concentrate and waste streams from backwashing and membrane cleaning in each scenario are characterised with this information facilitating a better understanding of the transport of algal cells and metabolites in membrane processes. Current strategies and gaps in managing concentrate and waste streams are identified with guidance and perspectives for future studies discussed in an Eisenhower framework.


Assuntos
Purificação da Água , Água , Água Doce , Proliferação Nociva de Algas , Água do Mar , Águas Residuárias
15.
ACS Appl Mater Interfaces ; 12(29): 32788-32796, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597634

RESUMO

The freshwater scarcity and increasing energy demand are two challenging global issues. Herein, we propose a new route for desalination, self-sustained visible-light-driven electrochemical redox desalination. We propose a novel device architecture involving internal integration of a quasi-solid-state dye-sensitized solar cell and continuous redox-flow desalination units with a bifunctional platinized-graphite-paper electrode. Both the solar cell and redox-flow desalination units are integrated using the bifunctional electrode with one side facing the solar cell operating as a positive electrode and the other side facing the redox-flow desalination unit operating as a negative electrode. The solar cell contains a gel-based tri-iodide/iodide redox couple sandwiched between an N719 dye-modified photoanode and cathode. In contrast, the redox-flow desalination consists of re-circulating ferro/ferricyanide redox couple sandwiched between the anode and cathode with two salt streams located between these electrodes. The performances of bifunctional electrodes in both redox couples were thoroughly investigated by electrochemical characterization. The brackish feed can be continuously desalted to the freshwater level by utilizing visible light illumination. As a device, this architecture combines energy conversion and water desalination. This concept bypasses the need for electrical energy consumption for desalination, which provides a novel structural design using photodesalination to facilitate the development of self-sustained solar desalination technologies.

16.
Water Res ; 181: 115843, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422450

RESUMO

In this study, a coupled system of algal-sludge and membrane bioreactor (AS-MBR) was established for fouling control, and meanwhile the performance of wastewater treatment was enhanced. Results indicated that the AS-MBR increased the COD, NH4+-N, TN and PO43- -P removal efficiencies from 91.7% to 95.9%, 90.8%-96.9%, 22.0% to 34.3% and 18.4%-32.6%, respectively. Further analysis suggested that in the AS-MBR, the total specific oxygen utilization rate (SOUR), the SOUR of ammonia oxidizing bacteria and the SOUR of nitrite oxidizing bacteria were 26.6%, 58.5% and 52.4% higher than the control, respectively, indicating the improvement of microbial activities in AS-MBR. Additionally, the membrane fouling rates in the AS-MBR were 52.6% and 32.2% lower than the control in the slow and rapid fouling processes, respectively. A further mechanism investigation demonstrated that the concentrations of extracellular polymeric substance (EPS) were decreased by 19.8% and 22.1% in the mixed liquid and the fouling layer, respectively, after the inoculation of algae, which was expected to have a positive effect on the higher permeability and longer operation cycle of the membrane in the AS-MBR. More regular floc morphology was observed for the fouling layer on the membrane of AS-MBR, with the polysaccharides and proteins forming large clusters and channels in the fouling layer that likely decreased the filtration resistance. Consequently, high-throughput sequencing analysis revealed that the microbial community in the AS-MBR had higher abundances of bacteria and algae related to nutrients and organic matters degradation, which was beneficial for the improvement of wastewater treatment and alleviation of membrane fouling.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Reatores Biológicos , Membranas Artificiais , Águas Residuárias
17.
Water Res ; 177: 115785, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32304906

RESUMO

In the present study, radiolabelled formate was used as a probe compound in order to gain mechanistic insight into the catalytic ozonation process using a commercially available iron oxide-impregnated activated carbon catalyst. We simultaneously analysed the adsorptive and oxidative removal of formate in order to determine the contribution of the catalyst to adsorption and oxidant generation processes respectively. Our results show that the presence of the catalyst enhanced ozone decay as well as the rate and extent of formate oxidation at pH 3.0 compared to that observed in the presence of ozone alone as a result of oxidant generation via O3-Fe oxide interaction. A reduction in rate and extent of formate oxidation on addition of t-butanol and Cl- (known hydroxyl radical (•OH) scavengers under acidic conditions) provides evidence that the oxidant generated during catalytic ozonation at pH 3.0 is •OH. Moreover, the oxidation of formate during catalytic ozonation mostly occurs at the solid-liquid interface and/or in bulk solution with adsorption playing no role in the overall oxidation process with this finding supported by the exceptionally high oxidation efficiency compared to the extent of adsorption observed when no O3 was added. While catalytic ozonation was effective in formate oxidation at pH 3.0, the presence of the catalyst did not lead to an increase in either the rate or extent of formate oxidation at pH 7.3 and 8.5 suggesting that only protonated iron oxide surface sites generate strong oxidant(s) on interaction with O3. Based on our understanding of the processes operating during the ozonation and catalytic ozonation processes, a mathematical model has been developed that adequately describes the experimental results obtained here. Overall, this study shows that systematic measurement of ozone decay, removal of the parent compound as well as formation of the oxidized products under well controlled conditions are required for unequivocal elucidation of the mechanism of catalytic ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Carvão Vegetal , Compostos Férricos
18.
Environ Sci Technol ; 54(8): 5227-5236, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202775

RESUMO

Magnéli phase titanium suboxide, Ti4O7, has attracted increasing attention as a potential electrode material in anodic oxidation as a result of its high efficiency and (electro)chemical stability. Although carbon materials have been amended to Ti4O7 electrodes to enhance the electrochemical performance or are present as an unwanted residual during the electrode fabrication, there has been no comprehensive investigation of how these carbon materials affect the electrochemical performance of the resultant Ti4O7 electrodes. As such, we investigated the electrochemical properties of Ti4O7 electrodes impregnated with carbon materials at different contents (and chemical states). Results of this study showed that while pure Ti4O7 electrodes exhibited an extremely low rate of interfacial electron transfer, the introduction of minor amounts of carbon materials (at values as low as 0.1 wt %) significantly facilitated the electron transfer process and decreased the oxygen evolution reaction potential. The oxygen-containing functional groups have been shown to play an important role in interfacial electron transfer with moderate oxidation of the carbon groups aiding electron uptake at the electrode surface (and consequently organic oxidation) while the generation of carboxyl groups-a process that is likely to occur in long-term operation-increased the interfacial resistance and thus retarded the oxidation process. Results of this study provide a better understanding of the relationship between the nature of the electrode surface and anodic oxidation performance with these insights likely to facilitate improved electrode design and optimization of operation of anodic oxidation reactors.


Assuntos
Titânio , Poluentes Químicos da Água , Carbono , Eletrodos , Oxirredução
19.
Water Res ; 173: 115580, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32065937

RESUMO

While flow-electrode capacitive deionization (FCDI), one of the most popular CDI variants, possesses a number of advantages over conventional fixed-electrode CDI (e.g., large salt adsorption capacity, high flow efficiency and convenient management of the electrodes), challenges remain in constructing and operating an FCDI system such that it can operate continuously. Here we achieve effective continuous removal of salt from a brackish feed stream using flowing carbon electrodes which are regenerated in a closed-loop manner by using our previously introduced integrated FCDI/MF strategy. The performance of the FCDI/MF system is characterized over a two week period of operation with key factors influencing the desalination performance identified. Results show that the FCDI/MF system is capable of continuously desalinating brackish water (∼2 g L-1) to portable levels (<0.5 g L-1) whilst sustaining an extraordinary water recovery rate (∼92%) and relatively low energy consumption (∼0.5 kWh m-3). No obvious deterioration in performance or membrane fouling was observed during the 14-day operation. While the carbon particles used in the flow electrode exhibited only a minor increase in oxygen-containing groups over the 14 days of operation, a significant reduction in particle size was observed, likely as a consequence of the high-frequency collisions and associated friction between particles that occurred in the FCDI/MF system. Further studies regarding flowable electrode optimization, cell configuration design and process modelling are needed in order to realize the scale-up and practical implementation of this emerging technology.


Assuntos
Purificação da Água , Adsorção , Eletrodos , Águas Salinas , Cloreto de Sódio
20.
Environ Res ; 180: 108861, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31703975

RESUMO

An electrochemical dynamic membrane filtration (EDMF) system for simultaneous solid-liquid separation (also protecting electrodes against fouling) and sewage disinfection was developed. At a low voltage of 2.5 V, efficient disinfection performance was achieved in the EDMF, with ~100% log removal efficiency (no detectable bacteria in the effluent). Results also demonstrated that the EDMF system, operated at membrane flux of 100 L/(m2 h), could maintain long-lasting bacterial disinfection efficiency of real wastewater (~100% log removal) in continuous flow tests. Transmembrane pressure (TMP) increased from 0.8 kPa to 22 kPa within 80 d (one operation cycle), and cleaning of EDMF could effectively restore TMP and biocidal behaviors for subsequent filtration cycles. In contrast, without dynamic membrane, the disinfection efficiency was decreased from initial ~100% log removal (with no detectable live bacteria) to ~44.4% log removal within 7 d. Reactive oxygen species (ROS)-mediated oxidation was responsible for bacteria disinfection in the EDMF, and HO• and H2O2 generated in this system played a dominant role, causing damage to cell membranes and K+ leakage from cytosol. Moreover, catalase and superoxide dismutase for intracellular ROS attenuation were inhibited, resulting in the increase of intracellular oxidative stress and thus high-efficient disinfection. These results highlight the potential of EDMF system to be used for wastewater treatment and disinfection.


Assuntos
Desinfecção , Águas Residuárias , Purificação da Água , Filtração , Peróxido de Hidrogênio , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...