Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 10(1): 1875638, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33643692

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with highly immunosuppressive tumor microenvironment (TME) that can limit the efficacy of dendritic cell (DC) vaccine immunotherapy. Irreversible electroporation (IRE) is a local ablation approach. Herein, we test the hypothesis that IRE ablation can overcome TME immunosuppression to improve the efficacy of DC vaccination using KrasLSL-G12D-p53LSL-R172H-Pdx-1-Cre (KPC) orthotopic mouse model of PDAC. The median survival for mice treated with the combined IRE and DC vaccination was 77 days compared with sham control (35 days), DC vaccination (49 days), and IRE (44 days) groups (P = .006). Thirty-six percent of the mice treated with combination IRE and DC vaccination were still survival at the end of the study period (90 days) without visible tumor. The changes of tumor apparent diffusion coefficient (ΔADC) were higher in mice treated with combination IRE and DC vaccination than that of other groups (all P < .001); tumor ΔADC value positively correlated with tumor fibrosis fraction (R = 0.707, P < .001). IRE induced immunogenic cell death and alleviation of immunosuppressive components in PDAC TME when combined with DC vaccination, including increased tumor infiltration of CD8+ T cells and Granzyme B+ cells (P = .001, and P = .007, respectively). Our data show that IRE ablation can overcome TME immunosuppression to improve the efficacy of DC vaccination in PDAC. Combination IRE ablation and DC vaccination may enhance therapeutic efficacy for PDAC.

2.
Am J Cancer Res ; 10(11): 3911-3919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294276

RESUMO

It is unknown whether the route of administration impacts dendritic cell (DC)-based immunotherapy for pancreatic ductal adenocarcinoma (PDAC). We compared the effect of intraperitoneal (i.p.), subcutaneous (s.c.), and intratumoral (i.t.) administration of DC vaccine on induction of antitumor responses in a KPC mouse model of PDAC. Histological analysis and flow cytometry were used to evaluate tumor progression and antitumor immunity after different routes of DC vaccination. Using a flank mouse model of PDAC, we found that the i.t. route of DC vaccination had no significant effect on tumor growth rates compared with i.p. and s.c. routes (i.p. 6.66 ± 2.58% vs s.c. 6.79 ± 1.36% vs i.t. 8.57 ± 2.36%; P = 0.33). However, in an orthotopic PDAC model, i.p. injection of DC vaccine effectively suppressed tumor growth, inhibited tumor progression, and increased antitumor immunity compared with s.c. vaccination (tumor weight: i.p. 71.60 ± 15.55 mg vs control 200.40 ± 53.04 mg; P = 0.048; s.c. 151.40 ± 41.64 mg vs control 200.40 ± 53.04 mg; P = 0.49). Our study suggests that immunization via an i.p. route results in superior antitumor immune response and tumor suppression when compared with other routes.

4.
Adv Exp Med Biol ; 1207: 163-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671745

RESUMO

Epilepsy is a long-term neurological disease characterized by convulsions that can be recurrent. It is mainly caused by an imbalance between excitation and inhibition in the central nervous system. Currently, the pathogenesis is still unclear, although it may be related to changes in ion channels, neurotransmitters and glial cells. In recent years, increasing attention has been paid to the role of autophagy in the development of epilepsy. This chapter focuses on the role of the mTOR pathway in epileptogenesis and the relationship between autophagy, glycogen metabolism and Lafora disease and discusses the potential role of autophagy as a target for the treatment of epilepsy.


Assuntos
Autofagia , Epilepsia , Autofagia/efeitos dos fármacos , Epilepsia/terapia , Humanos , Doença de Lafora , Convulsões
5.
Adv Exp Med Biol ; 1207: 171-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671746

RESUMO

Neurodevelopmental diseases are a class of neurodevelopmental disorders characterized by cognitive impairment and behavioral abnormalities and are mainly manifested as developmental disorders of the brain and nervous system. The pathological mechanism is not fully understood and may be related to hereditary or environmental factors. The elevation of autophagy during neural development suggests that autophagy may be involved in the process of neurodevelopment. This chapter focuses on the important functions of autophagy in all aspects of neurodevelopment and the role and mechanism of autophagy in neurodevelopmental disorders, especially in autism spectrum disorder.


Assuntos
Autofagia , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista , Encéfalo/patologia , Humanos
6.
Alzheimers Res Ther ; 12(1): 47, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32331528

RESUMO

BACKGROUND: Amyloid beta (Aß) which is recognized as a main feature of Alzheimer's disease (AD) has been proposed to "spread" through anatomically and functionally connected brain regions. The entorhinal cortex and perforant path are the earliest affected brain regions in AD. The perforant path is the most vulnerable circuit in the cortex with respect to both aging and AD. Previous data show that the origins and terminations of the perforant path are susceptible to amyloid deposition at the younger age in AD. Nogo receptor (NgR) plays an essential role in limiting injury-induced axonal growth and experience-dependent plasticity in the adult brain. It has been suggested that NgR is involved in AD pathological features, but the results have been conflicting and the detailed mechanism needs further investigation. In this study, the effect of NgR in the perforant path on the pathological and functional phenotype of APP/PS1 transgenic mice was studied. METHODS: To genetically manipulate NgR expression, adeno-associated virus (AAV) with short hairpin (shRNA) against NgR was injected into the perforant path of APP/PS1 transgenic mice, followed by an assessment of behavioral, synaptic plasticity and neuropathological phenotypes. NgR was overexpressed or knockdown in neuroblastoma N2a cells and APPswe/HEK293 cells to investigate the interaction between NgR and amyloid precursor protein (APP). RESULTS: It is shown that reduction of NgR in the perforant path rescued cognitive and synaptic deficits in APP/PS1 transgenic mice. Concurrently, Aß production in the perforant path and levels of soluble Aß and amyloid plaques in the hippocampus were significantly decreased. There was a positive correlation between the total APP protein level and NgR expression both in transgenic mice and in cultured cells, where the α-secretase and ß-secretase cleavage products both changed with APP level in parallel. Finally, NgR might inhibit APP degradation through lysosome by Rho/Rho-associated protein kinases (ROCK) signaling pathway. CONCLUSIONS: Our findings demonstrate that perforant path NgR plays an important role in regulating APP/Aß level and cognitive functions in AD transgenic mice, which might be related to the suppression of APP degradation by NgR. Our study suggests that NgR in the perforant path could be a potential target for modulating AD progression.

7.
J Alzheimers Dis ; 75(1): 245-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280096

RESUMO

Excitatory (E) and inhibitory (I) balance of neural network activity is essential for normal brain function and of particular importance to memory. Disturbance of E/I balance contributes to various neurological disorders. The appearance of neural hyperexcitability in Alzheimer's disease (AD) is even suggested as one of predictors of accelerated cognitive decline. In this study, we found that GAD67+, Parvalbumin+, Calretinin+, and Neuropeptide Y+ interneurons were progressively lost in the brain of APP/PS1 mice. Transplanted embryonic medial ganglionic eminence derived interneuron progenitors (IPs) survived, migrated, and differentiated into GABAergic interneuron subtypes successfully at 2 months after transplantation. Transplantation of IPs hippocampally rescued impaired synaptic plasticity and cognitive deficits of APP/PS1 transgenic mice, concomitant with a suppression of neural hyperexcitability, whereas transplantation of IPs failed to attenuate amyloid-ß accumulation, neuroinflammation, and synaptic loss of APP/PS1 transgenic mice. These observations indicate that transplantation of IPs improves learning and memory of APP/PS1 transgenic mice via suppressing neural hyperexcitability. This study highlights a causal contribution of GABAergic dysfunction to AD pathogenesis and the potentiality of IP transplantation in AD therapy.

8.
Am J Transl Res ; 12(3): 1031-1043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269732

RESUMO

Dinaciclib is a small molecule cyclin-dependent kinase inhibitor with the potential to treat multiple cancers. To better understand its cytotoxic action in pancreatic ductal adenocarcinoma (PDAC), we evaluated dinaciclib therapeutic effects in the transgenic mouse model (LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx-1-Cre mice; KPC mice). Tumor growth and microenvironment were dynamically monitored by magnetic resonance imaging (MRI). Dinaciclib therapy significantly delayed tumor progression (P < 0.001) and prolonged survival (P = 0.007) in KPC mice. In vitro assays showed that dinaciclib exerted antiproliferative effects on PDAC cells by increasing surface calreticulin expression and release of ATP. Dinaciclib treatment inhibited proliferation and induced apoptosis in KPC tumor as assessed by Ki67 and cleaved caspase 3, respectively. Particularly, the tumor infiltrating CD8+ T cells were increased after dinaciclib treatment in KPC mice. Additionally, the mean apparent diffusion coefficient values of KPC tumor calculated from diffusion weighted MR images were significantly lower after dinaciclib treatment (P = 0.033). These finding suggest that dinaciclib as a single agent can inhibit tumor growth and improve the overall survival in KPC mice.

9.
Cereb Cortex ; 30(8): 4617-4632, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32219328

RESUMO

Synaptic plasticity is the neural basis of physiological processes involved in learning and memory. Tripartite motif-containing 32 (TRIM32) has been found to play many important roles in the brain such as neural stem cell proliferation, neurogenesis, inhibition of nerve proliferation, and apoptosis. TRIM32 has been linked to several nervous system diseases including autism spectrum disorder, depression, anxiety, and Alzheimer's disease. However, the role of TRIM32 in regulating the mechanism of synaptic plasticity is still unknown. Our electrophysiological studies using hippocampal slices revealed that long-term potentiation of CA1 synapses was impaired in TRIM32 deficient (KO) mice. Further research found that dendritic spines density, AMPA receptors, and synaptic plasticity-related proteins were also reduced. NMDA receptors were upregulated whereas GABA receptors were downregulated in TRIM32 deficient mice, explaining the imbalance in excitatory and inhibitory neurotransmission. This caused overexcitation leading to decreased neuronal numbers in the hippocampus and cortex. In summary, this study provides this maiden evidence on the synaptic plasticity changes of TRIM32 deficiency in the brain and proposes that TRIM32 relates the notch signaling pathway and its related mechanisms contribute to this deficit.

10.
Aging Cell ; 19(5): e13114, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212304

RESUMO

Hematopoietic disorders are known to increase the risk of complications such as osteoporosis. However, a direct link between hematopoietic cellular disorders and osteoporosis has been elusive. Here, we demonstrate that the deterioration of hematopoietic autophagy is coupled with osteoporosis in humans. With a conditional mouse model in which autophagy in the hematopoietic system is disrupted by deletion of the Atg7 gene, we show that incapacitating hematopoietic autophagy causes bone loss and perturbs osteocyte homeostasis. Induction of osteoporosis, either by ovariectomy, which blocks estrogen secretion, or by injection of ferric ammonium citrate to induce iron overload, causes dysfunction in the hematopoietic stem and progenitor cells (HSPCs) similar to that found in autophagy-defective mice. Transcriptomic analysis of HSPCs suggests promotion of iron activity and inhibition of osteocyte differentiation and calcium metabolism by hematopoietic autophagy defect, while proteomic profiling of bone tissue proteins indicates disturbance of the extracellular matrix pathway that includes collagen family members. Finally, screening for expression of selected genes and an immunohistological assay identifies severe impairments in H vessels in the bone tissue, which results in disconnection of osteocytes from hematopoietic cells in the autophagy-defective mice. We therefore propose that hematopoietic autophagy is required for the integrity of H vessels that bridge blood and bone cells and that its deterioration leads to osteoporosis.

11.
Cytotherapy ; 22(1): 6-15, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32005355

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths with high recurrence after surgery due to a paucity of effective post-surgical adjuvant treatments. DC vaccines can activate multiple anti-tumor immune responses but have not been explored for post-surgery PDAC recurrence. Intraperitoneal (IP) delivery may allow increased DC vaccine dosage and migration to lymph nodes. Here, we investigated the role of prophylactic DC vaccination controlling PDAC tumor growth with IP delivery as an administration route for DC vaccination. METHODS: DC vaccines were generated using ex vivo differentiation and maturation of bone marrow-derived precursors. Twenty mice were divided into four groups (n = 5) and treated with DC vaccines, unpulsed mature DCs, Panc02 lysates or no treatment. After tumor induction, mice underwent three magnetic resonance imaging scans to track tumor growth. Apparent diffusion coefficient (ADC), a quantitative magnetic resonance imaging measurement of tumor microstructure, was calculated. Survival was tracked. Tumor tissue was collected after death and stained with hematoxylin and eosin, Masson's trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-CD8 stains for histology. RESULTS: DC-vaccinated mice demonstrated stronger anti-tumor cytotoxicity compared with control groups on lactate dehydrogenase assay. DC vaccine mice also demonstrated decreased tumor volume, prolonged survival and increased ΔADC compared with control groups. On histology, the DC vaccine group had increased apoptosis, increased CD8+ T cells and decreased collagen. ΔADC negatively correlated with % collagen in tumor tissues. DISCUSSION: Prophylactic DC vaccination may inhibit PDAC tumor growth during recurrence and prolong survival. ΔADC may be a potential imaging biomarker that correlates with tumor histological features.


Assuntos
Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/terapia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Neoplasias Pancreáticas/terapia , Adenocarcinoma/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/prevenção & controle , Vacinação
12.
Cereb Cortex ; 30(5): 3240-3258, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31828304

RESUMO

Mammalian target of rapamycin (mTOR) signaling plays essential roles in brain development. Hyperactive mTOR is an essential pathological mechanism in autism spectrum disorder (ASD). Here, we show that tripartite motif protein 32 (TRIM32), as a maintainer of mTOR activity through promoting the proteasomal degradation of G protein signaling protein 10 (RGS10), regulates the proliferation of medial/lateral ganglionic eminence (M/LGE) progenitors. Deficiency of TRIM32 results in an impaired generation of GABAergic interneurons and autism-like behaviors in mice, concomitant with an elevated autophagy, which can be rescued by treatment embryonically with 3BDO, an mTOR activator. Transplantation of M/LGE progenitors or treatment postnatally with clonazepam, an agonist of the GABAA receptor, rescues the hyperexcitability and the autistic behaviors of TRIM32-/- mice, indicating a causal contribution of GABAergic disinhibition. Thus, the present study suggests a novel mechanism for ASD etiology in that TRIM32 deficiency-caused hypoactive mTOR, which is linked to an elevated autophagy, leads to autism-like behaviors via impairing generation of GABAergic interneurons. TRIM32-/- mouse is a novel autism model mouse.

13.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31816056

RESUMO

The development of cerebral cortex requires spatially and temporally orchestrated proliferation, migration, and differentiation of neural progenitor cells (NPCs). The molecular mechanisms underlying cortical development are, however, not fully understood. The neural cell adhesion molecule (NCAM) has been suggested to play a role in corticogenesis. Here we show that NCAM is dynamically expressed in the developing cortex. NCAM expression in NPCs is highest in the neurogenic period and declines during the gliogenic period. In mice bearing an NPC-specific NCAM deletion, proliferation of NPCs is reduced, and production of cortical neurons is delayed, while formation of cortical glia is advanced. Mechanistically, NCAM enhances actin polymerization in NPCs by interacting with actin-associated protein profilin2. NCAM-dependent regulation of NPCs is blocked by mutations in the profilin2 binding site. Thus, NCAM plays an essential role in NPC proliferation and fate decision during cortical development by regulating profilin2-dependent actin polymerization.


Assuntos
Antígeno CD56/fisiologia , Diferenciação Celular , Córtex Cerebral/citologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Profilinas/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Córtex Cerebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Profilinas/genética
14.
Am J Cancer Res ; 9(11): 2456-2468, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815046

RESUMO

The promise of dendritic cell (DC)-based immunotherapy has been established by two decades of translational research. However, long-term benefits of DC vaccination are reported in only scattered patients with pancreatic ductal adenocarcinoma (PDAC). Here we optimize DC vaccination and evaluate its safety and antitumor efficacy in the genetically engineered PDAC model (KrasLSL-G12D p53LSL-R172H Pdx-1-Cre (KPC mice)). KPC transgenic mice and orthotopic models using KPC cell lines were treated with DC vaccine via an intraperitoneal route. Tumor growth and microenvironment were dynamically monitored by magnetic resonance imaging (MRI). Histological analysis and flow cytometry were used to evaluate tumor-directed T cell immunity of these mice. DC vaccine via intraperitoneal injection suppressed tumor progression (P = 0.030) and significantly prolonged survival time (P = 0.028) in KPC mice. Vaccinated KPC mice displayed an increased antitumor T cell response indicated by a higher IFN-γ production (P = 0.016) and tumor-specific cytotoxicity (P = 0.027). Particularly, the mean apparent diffusion coefficient (ADC) values of KPC tumor calculated from diffusion weighted MRI (DW-MRI) were significantly higher in DC vaccine group than that in control group (P < 0.001). More interestingly, we observed that ADC positively correlated with fibrosis in KPC tumor (R2 = 0.463, P = 0.015). Our study demonstrated that the immunization with our improved DC vaccine can elicit a strong tumor-specific immune response and tumor suppression in PDAC.

15.
Am J Cancer Res ; 9(9): 1982-1994, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598399

RESUMO

The purpose of our study was to investigate the hypothesis that DWI-MRI and DCE-MRI cab be used to distinguish between IRE and RE zones of IRE treatment in a rabbit liver model. 6 rabbits underwent baseline and post-procedure MR imaging with DWI and DCE-MRI as well as IRE (10 pulses, 2000 V, 10 µs/pulse, 10 ms between pulses). Rabbits were euthanized immediately after post-procedure MRI to acquire liver tissue for histology. Liver tissues were fixed and then stained with HE and TUNEL. T1w and T2w intensities in different treatment zones were calculated and normalized to paraspinal muscle signal. ADC maps were generated from DWI. AUC, PE, TTP, WIS, Ktrans, Kep, and VE were calculated from DCE-MRI. Apoptosis index was calculated from TUNEL stained tissues. P<0.05 was considered statistically significant. Entire IRE treated region was hyperintense compared with untreated tissues on T1w, with the RE zone having a higher signal intensity. On DWI, IRE treated tissue had decreased ΔADC. The IRE zone has a lower ΔADC than the RE zone within the treated region. On DCE-MRI, IRE zone demonstrated the highest TTP and the lowest PE, WIS, Ktrans, Kep, and VE, followed by the RE zone then the untreated tissue. TUNEL staining of liver tissues showed that the IRE zone had the highest apoptosis index, followed by the RE zone and then untreated tissue. In conclusion, DCE-MRI and DWI parameters allow differentiation between RE and IRE zones in a rabbit liver model.

16.
Am J Cancer Res ; 9(8): 1757-1765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497356

RESUMO

Natural killer (NK) cells play a pivotal role in host immunity against different malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our study aimed to evaluate the antitumor effects of NK cell-based adoptive transfer immunotherapy for PDAC in an orthotopic mouse model. Orthotopic KrasLSL-G12D p53LSL-R172H Pdx1-Cre (KPC) mice were used to evaluate the therapeutic efficacy. Mouse NK cells (LNK cells) (1×106) were intravenously injected to tumor-bearing mice once a week for 3 weeks. MRI measurements (tumor volume and apparent diffusion coefficient (ADC) values) and survival were compared between control and LNK treated tumors. Flow cytometry and enzyme-linked immunosorbent assay (ELISA) were used to determine LNK cells cytotoxicity and IFN-γ level, respectively. LNK cells can produce a higher level of IFN-γ and more effectively lyse PDAC cells compared with spleen NK cells in vitro. LNK-cell adoptive transfer therapy elicited potent in vivo antitumor activity, resulting in delayed tumor growth (P=0.033) in KPC mice. The ADC values at the last timepoint ((0.94±0.06)×10-3 mm2/s) were significantly higher than that at first timepoint ((0.75±0.04)×10-3 mm2/s) in treated tumors (P<0.001). ADC values were significantly different between control group and treated tumors at the last time point ((0.75±0.09)×10-3 mm2/s vs (0.94±0.06)×10-3 mm2/s, P=0.004) in KPC mice. Our data demonstrate the potential of NK cell-based adoptive transfer immunotherapy for PDAC treatment.

17.
Clin Cancer Res ; 25(18): 5572-5583, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31227500

RESUMO

PURPOSE: Radiotherapy (RT) has long been and remains the only treatment option for diffuse intrinsic pontine glioma (DIPG). However, all patients show evidence of disease progression within months of completing RT. No further clinical benefit has been achieved using alternative radiation strategies. Here, we tested the hypothesis that histone demethylase inhibition by GSK-J4 enhances radiation-induced DNA damage, making it a potential radiosensitizer in the treatment of DIPG.Experimental Design: We evaluated the effects of GSK-J4 on genes associated with DNA double-strand break (DSB) repair in DIPG cells by RNA sequence, ATAC sequence, and quantitative real-time PCR. Radiation-induced DNA DSB repair was analyzed by immunocytochemistry of DSB markers γH2AX and 53BP1, DNA-repair assay, and cell-cycle distribution. Clonogenic survival assay was used to determine the effect of GSK-J4 on radiation response of DIPG cells. In vivo response to radiation monotherapy and combination therapy of RT and GSK-J4 was evaluated in patient-derived DIPG xenografts. RESULTS: GSK-J4 significantly reduced the expression of DNA DSB repair genes and DNA accessibility in DIPG cells. GSK-J4 sustained high levels of γH2AX and 53BP1 in irradiated DIPG cells, thereby inhibiting DNA DSB repair through homologous recombination pathway. GSK-J4 reduced clonogenic survival and enhanced radiation effect in DIPG cells. In vivo studies revealed increased survival of animals treated with combination therapy of RT and GSK-J4 compared with either monotherapy. CONCLUSIONS: Together, these results highlight GSK-J4 as a potential radiosensitizer and provide a rationale for developing combination therapy with radiation in the treatment of DIPG.


Assuntos
Glioma Pontino Intrínseco Difuso/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Animais , Benzazepinas/farmacologia , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/mortalidade , Glioma Pontino Intrínseco Difuso/radioterapia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Feminino , Recombinação Homóloga , Humanos , Camundongos , Prognóstico , Pirimidinas/farmacologia , Tolerância a Radiação/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Cancer Res ; 9(3): 562-573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949410

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) carries the worst prognosis and caused one of the highest cancer-related mortalities. Dendritic cell (DC) vaccination is a promising cancer immunotherapy; however, the clinical outcomes are often poor. The administration route of DC vaccine can significantly alter the anti-tumor immune response. Here we report on the cytotoxic T lymphocyte (CTL) responses induced by DC vaccination administered via intraperitoneal (IP) for murine PDAC, and the longitudinal assessment of tumor growth and therapeutic responses using magnetic resonance imaging (MRI). In this study, we established murine orthotopic Panc02 models of PDAC and delivered apoptotic Panc02 cell-pulsed DCs via IP injection. The migration of Panc02-pulsed DCs into spleens significantly increased from 6 h to 12 h after initiation of treatment (P = 0.002), and Panc02-pulsed DCs injected via IP induced a significantly higher level of CTL responses against Panc02 cells compared to unpulsed DCs. Tumor size and tumor apparent diffusion coefficient (ADC) were measured on MR images. Tumor sizes were significantly smaller in the treated mice than in the untreated mice (P < 0.05). The reduction of tumor ADC was less in the treated mice than in the untreated mice (P < 0.05), and the changes in tumor ADC showed significant negative correlation with the changes in tumor volume (r = -0.882, 95% confidence interval, -0.967 to -0.701, P < 0.0001). These results demonstrated the efficacy of DC vaccination administered via IP injection in murine PDAC, and the feasibility of ADC measurement as an imaging biomarker for assessment of therapeutic responses in immunotherapy.

19.
Mol Cancer Res ; 17(6): 1305-1315, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842251

RESUMO

Medulloblastoma is a highly malignant pediatric brain tumor associated with poor outcome. Developing treatments that target the cancer stem cell (CSC) population in medulloblastoma are important to prevent tumor relapse and induce long-lasting clinical responses. We utilized medulloblastoma neurospheres that display CSC characteristics and found activation of the PI3K/AKT pathway in sphere-forming cells. Of all class IA PI3Ks, only the PI3Kα isoform was required for sphere formation by medulloblastoma cells. Knockdown of p110α, but not p110ß or p110δ, significantly disrupted cancer stem cell frequencies as determined by extreme limiting dilution analysis (ELDA), indicating an essential role for the PI3Kα catalytic isoform in medulloblastoma CSCs. Importantly, pharmacologic inhibition of the MAPK-interacting kinase (MNK) enhanced the antineoplastic effects of targeted PI3Kα inhibition in medulloblastoma. This indicates that MNK signaling promotes survival in medulloblastoma, suggesting dual PI3Kα and MNK inhibition may provide a novel approach to target and eliminate medulloblastoma CSCs. We also observed a significant reduction in tumor formation in subcutaneous and intracranial mouse xenograft models, which further suggests that this combinatorial approach may represent an efficient therapeutic strategy for medulloblastoma. IMPLICATIONS: These findings raise the possibility of a unique therapeutic approach for medulloblastoma, involving MNK targeting to sensitize medulloblastoma CSCs to PI3Kα inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , ATPases Transportadoras de Cobre/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/metabolismo , Feminino , Humanos , Meduloblastoma/metabolismo , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Front Neurosci ; 13: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778282

RESUMO

Mitochondria are the double membrane organelles providing most of the energy for cells. In addition, mitochondria also play essential roles in various cellular biological processes such as calcium signaling, apoptosis, ROS generation, cell growth, and cell cycle. Mitochondrial dysfunction is observed in various neurological disorders which harbor acute and chronic neural injury such as neurodegenerative diseases and ischemia, hypoxia-induced brain injury. In this review, we describe how mitochondrial dysfunction contributes to the pathogenesis of neurological disorders which manifest chronic or acute neural injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...