Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; : e13508, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751998

RESUMO

An increasing number of men are fathering children at an older age than in the past. While advanced maternal age has long been recognized as a risk factor for adverse reproductive outcomes, the influence of paternal age on reproduction is incompletely comprehended. Herein, we found that miR-125a-5p was upregulated in the sperm of aging males and was related to inferior sperm DNA integrity as an adverse predictor. Moreover, we demonstrated that miR-125a-5p suppressed mitochondrial function and increased cellular DNA damage in GC2 cells. We also found that miR-125a-5p perturbed embryo development at specific morula/blastocyst stages. Mechanistically, we confirmed that miR-125a-5p disturbed the mitochondrial function by targeting Rbm38 and activating the p53 damage response pathway, and induced a developmental delay in a p21-dependent manner. Our study revealed an important role of miR-125a-5p in sperm function and early embryo development of aging males, and provided a fresh view to comprehend the aging process in sperm.

2.
Nano Lett ; 21(21): 9164-9171, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699240

RESUMO

Fibrous supercapacitors have garnered great interest from researchers because of their large electrode/electrolyte interface area, short ion transport path, and high flexibility. However, obtaining a thin gel electrolyte interlayer with a high ion transport rate and uniform thickness is still challenging. Here, we proposed an efficient wet-spinning technique to fabricate uniform polyvinyl-montmorillonite tubular layers for the preparation of a high-performance coaxial asymmetry fibrous supercapacitor (AFSC). The coaxial AFSC shows ultrahigh energy densities in the range of 2.86-4.04 µW h cm-2 at power densities of 0.16-1.61 mW cm-2 while maintaining a long cycling life (94% retention even after 20 000 cycles). After charging at a constant voltage of 2.4 V for 30 s, the flexible watchband which is composed of three series-connected AFSCs could power a commercial electronic watch for more than 2 min. This work provides a universal strategy to fabricate high-performance and wearable energy storage devices.

3.
Front Immunol ; 12: 723409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712227

RESUMO

Seminal plasma (SP), particularly SP exosomes (sExos), alters with age and can affect female mouse uterine immune microenvironment. However, the relationship between fertility decline in reproductively older males, and SP and sExos age-related changes, which may compromise the uterine immune microenvironment, remains unclear. The present study demonstrated that the implantation rate of female mice treated with SP from reproductively older male mice (aged-SP group) was lower than that of those treated with SP from younger male mice (young-SP group). RNA-sequencing analysis revealed altered levels of dendritic cell (DC)-related cytokines and chemokines in the uteri of the former group compared with those of the latter group. In vivo and in vitro experiments demonstrated a weaker inhibitory effect of aged SP on DC maturation than of young SP upon stimulation. After isolating and characterizing sExos from young and advanced-age male mice, we discovered that insemination of a subset of the aged-SP group with sExos from young male mice partially recovered the implantation rate decline. Additional in vivo and in vitro experiments revealed that sExos extracted from age male mice exerted a similar effect on DC maturation as SP of aged mice, indicating an age-related sExos inhibitory effect. In conclusion, our study demonstrated that age-related alterations of sExos may be partially responsible for lower implantation rates in the aged-SP group compared with those in the young-SP group, which were mediated by uterine immunomodulation. These findings provide new insights for clinical seminal adjuvant therapy.

4.
Mol Hum Reprod ; 27(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34524457

RESUMO

Endometrial receptivity is crucial for successful embryo implantation. It is regulated by multiple factors which include ovarian steroid hormones and the immune microenvironment among others. Nod-Like Receptor Pyrins-3 (NLRP3) is a key intracellular pattern-recognition receptor and a critical component of the inflammasome, which plays an essential role in the development of inflammation and of immune responses. However, the physiological functions of NLRP3 in the endometrium remain largely unclear. This study investigated the physiological and pathological significance of NLRP3 in human endometrial epithelial cell during the implantation window. NLRP3 is highly expressed during the mid-proliferative and mid-secretory phases of the human endometrium and transcriptionally up-regulated by estradiol (E2) through estrogen receptor ß (ERß). In addition, NLRP3 promotes embryo implantation and enhances epithelial-mesenchymal transition (EMT) of Ishikawa (IK) cells via both inflammasome-dependent and inflammasome-independent pathways, which might provide a novel insight into endometrial receptivity and embryo implantation. Our findings suggest that NLRP3, which is transcriptionally regulated by E2, induces epithelial-mesenchymal transition of endometrial epithelial cells and promotes embryo adhesion.

5.
Nanomicro Lett ; 13(1): 124, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34138351

RESUMO

HIGHLIGHTS: Shape memory self-soldering tape used as conductive interconnecting material. Perfect shape and conductivity memory performance and anti-fatigue performance. Reversible strong-to-weak adhesion switched by temperature. With practical interest in the future applications of next-generation electronic devices, it is imperative to develop new conductive interconnecting materials appropriate for modern electronic devices to replace traditional rigid solder tin and silver paste of high melting temperature or corrosive solvent requirements. Herein, we design highly stretchable shape memory self-soldering conductive (SMSC) tape with reversible adhesion switched by temperature, which is composed of silver particles encapsulated by shape memory polymer. SMSC tape has perfect shape and conductivity memory property and anti-fatigue ability even under the strain of 90%. It also exhibits an initial conductivity of 2772 S cm-1 and a maximum tensile strain of ~ 100%. The maximum conductivity could be increased to 5446 S cm-1 by decreasing the strain to 17%. Meanwhile, SMSC tape can easily realize a heating induced reversible strong-to-weak adhesion transition for self-soldering circuit. The combination of stable conductivity, excellent shape memory performance, and temperature-switching reversible adhesion enables SMSC tape to serve two functions of electrode and solder simultaneously. This provides a new way for conductive interconnecting materials to meet requirements of modern electronic devices in the future.

6.
Cancers (Basel) ; 13(7)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808375

RESUMO

The SARS-CoV-2 (COVID-19) pandemic is having a large effect on the management of cancer patients. This study reports on the approach and outcomes of cancer patients receiving radical surgery with curative intent between March and September 2020 (in comparison to 2019) in the European Institute of Oncology, IRCCS (IEO) in Milan and the South East London Cancer Alliance (SELCA). Both institutions implemented a COVID-19 minimal pathway where patients were required to self-isolate prior to admission and were swabbed for COVID-19 within 72 h of surgery. Positive patients had surgery deferred until a negative swab. At IEO, radical surgeries declined by 6% as compared to the same period in 2019 (n = 1477 vs. 1560, respectively). Readmissions were required for 3% (n = 41), and <1% (n = 9) developed COVID-19, of which only one had severe disease and died. At SELCA, radical surgeries declined by 34% (n = 1553 vs. 2336). Readmissions were required for 11% (n = 36), <1% (n = 7) developed COVID-19, and none died from it. Whilst a decline in number of surgeries was observed in both centres, the implemented COVID-19 minimal pathways have shown to be safe for cancer patients requiring radical treatment, with limited complications and almost no COVID-19 infections.

7.
Front Cell Dev Biol ; 9: 648578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693006

RESUMO

Ovarian hyperstimulation syndrome (OHSS) is a common complication caused by ovulatory stimulation therapy, which manifests as an increase in ovarian volume, an increase in the number of oocytes retrieved, and increased vascular permeability throughout the body and especially in ovarian tissue. In our previous study, we found that electroacupuncture (EA) could prevent the progression of OHSS, by mainly affecting ovary. However, the specific molecules and the mechanism of this process were still unknown. In order to explore the underlying mechanism, OHSS rat model was established and EA treatment was performed, which was followed by proteomic analysis of ovaries. Results showed a significant increase in the expression level of CD200 in the ovaries of OHSS group treated with EA than those of OHSS group. Clinical data showed that the level of CD200 in follicular fluid was negatively correlated with the number of oocytes retrieved and serum E2 level. Further in vitro experiments showed a concentration-dependent role of human chorionic gonadotropin (hCG) in reducing CD200 and CD200R levels, and increasing inflammatory cytokine levels in cultured KGN cells. In human umbilical vein endothelial cells (HUVECs), the vascular barrier function was improved by CM (cultural medium from KGN cell) which treated with CD200Fc (CD200R agonist). Meanwhile, the results of in vivo experiments indicated that EA reduced the number of ovarian corpora lutea, decreased inflammatory response, and improved the vascular barrier function by increasing the expression of CD200 and CD200R in rat ovaries. These findings suggest that EA treatment may reduce oocyte number and maintain vascular barrier against OHSS through ovarian anti-inflammatory response mediated by CD200. Therefore, this study is the first to identify CD200 as a main of EA in the ovary and elucidate the possible mechanism of EA on preventing and treating OHSS, which provide a scientific basis for CD200 as an effector and indicator in EA treatment.

8.
Sci Adv ; 7(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568480

RESUMO

Evidence that offspring traits can be shaped by parental life experiences in an epigenetically inherited manner paves a way for understanding the etiology of depression. Here, we show that F1 offspring born to F0 males of depression-like model are susceptible to depression-like symptoms at the molecular, neuronal, and behavioral levels. Sperm small RNAs, and microRNAs (miRNAs) in particular, exhibit distinct expression profiles in F0 males of depression-like model and recapitulate paternal depressive-like phenotypes in F1 offspring. Neutralization of the abnormal miRNAs in zygotes by antisense strands rescues the acquired depressive-like phenotypes in F1 offspring born to F0 males of depression-like model. Mechanistically, sperm miRNAs reshape early embryonic transcriptional profiles in the core neuronal circuits toward depression-like phenotypes. Overall, the findings reveal a causal role of sperm miRNAs in the inheritance of depression and provide insight into the mechanism underlying susceptibility to depression.

9.
Nano Lett ; 21(2): 1047-1055, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33404256

RESUMO

Thermoelectric (TE) technology provides a new way to directly harvest and convert the heat continuously released from the human body. The greatest challenge for TE materials applied in wearable TE generators is compatible with the constantly changing morphology of the human body while offering a continuous and stable power output. Here, a stretchable carboxylic single-walled carbon nanotube (SWNT)-based TE fiber is prepared by an improved wet-spinning method. The stable Seebeck coefficient of the annealed carboxylic SWNT-based TE fiber is 44 µV/K even under the tensile strain of ∼30%. Experimental results show that the fiber can continue to generate constant TE potential when it is changed to various shapes. The new stretchable TE fiber has a larger Seebeck coefficient and more stretchability than existing TE fibers based on the Seebeck effect, opening a path to using the technology for a variety of practical applications.

10.
Reprod Toxicol ; 98: 233-241, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068716

RESUMO

Hydrogen sulfide (H2S), a gaseous intracellular signal transducer, participates in multiple physiological and pathological conditions, including reproductive conditions, and disrupts spermatogenesis. The blood-testis barrier (BTB) plays a vital role in spermatogenesis. However, the effect of H2S on the BTB and the underlying mechanism remain unclear. Herein, we examined the effect of H2S and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on the BTB and testicular functions. ICR male mice were randomly divided into the following groups: control, H2S exposure, and H2S exposure with ω-3 PUFAs intervention. The sperm parameters (sperm concentration and sperm motility) declined in the H2S group and improved in the ω-3 intervention group. BTB integrity was severely disrupted by H2S, and the BTB-related gene levels (ZO-1, Occludin, Claudin 11) decreased; ω-3 supplementation could alleviate BTB disruption by upregulating BTB-related genes, and TM4 Sertoli cells had a similar trend in vitro. p38 MAPK phosphorylation was upregulated in the Na2S treatment group and downregulated after ω-3 cotreatment. These findings suggest that H2S can impair the BTB and that ω-3 PUFAs supplementation can attenuate H2S toxicity in the male reproductive system. Our study elucidated the relationship between a gasotransmitter (H2S) and the BTB and identified the potential therapeutic effect of ω-3 PUFAs.


Assuntos
Barreira Hematotesticular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Sulfetos/toxicidade , Animais , Barreira Hematotesticular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Contagem de Espermatozoides , Motilidade Espermática/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testosterona/sangue , Proteínas de Junções Íntimas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Cell Death Dis ; 11(8): 626, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796811

RESUMO

Abnormal lipid/lipoprotein metabolism induced by obesity may affect spermatogenesis by inhibiting testosterone synthesis in Leydig cells. It is crucial to determine which components of lipoproteins inhibit testosterone synthesis. Circulating oxidized low-density lipoprotein (oxLDL), the oxidized form of LDL, has been reported to be an independent risk factor for decreased serum testosterone levels. However, whether oxLDL has a damaging effect on Leydig cell function and the detailed mechanisms have been rarely studied. This study first showed the specific localization of oxLDL and mitochondrial structural damage in testicular Leydig cells of high-fat diet-fed mice in vivo. We also found that oxLDL reduced the mitochondrial membrane potential (MMP) by disrupting electron transport chain and inhibited testosterone synthesis-related proteins and enzymes (StAR, P450scc, and 3ß­HSD), which ultimately led to mitochondrial dysfunction and decreased testosterone synthesis in Leydig cells. Further experiments demonstrated that oxLDL promoted lipid uptake and mitochondrial dysfunction by inducing CD36 transcription. Meanwhile, oxLDL facilitated COX2 expression through the p38 MAPK signaling pathway in Leydig cells. Blockade of COX-2 attenuated the oxLDL-induced decrease in StAR and P450scc. Our clinical results clarified that the increased serum oxLDL level was associated with a decline in circulating testosterone levels. Our findings amplify the damaging effects of oxLDL and provide the first evidence that oxLDL is a novel metabolic biomarker of male-acquired hypogonadism caused by abnormal lipid metabolism.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Células Intersticiais do Testículo/metabolismo , Lipoproteínas LDL/toxicidade , Mitocôndrias/metabolismo , Transdução de Sinais , Testosterona/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Adulto , Animais , Antígenos CD36/metabolismo , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dieta Hiperlipídica , Humanos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fosfoproteínas/metabolismo , Sêmen/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/ultraestrutura , Testosterona/sangue , Transcrição Genética/efeitos dos fármacos , Adulto Jovem
12.
Nano Lett ; 20(8): 6176-6184, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662654

RESUMO

Skin-mountable physical sensors that can individually detect mechanical deformations with high strain sensitivity within a broad working strain range and temperature variations with accurate temperature resolution are a sought-after technology. Herein, a stretchable temperature and strain dual-parameter sensor that can precisely detect and distinguish strain from temperature stimuli without crosstalk is developed, based on a printable titanium carbide (MXene)-silver nanowire (AgNW)-PEDOT:PSS-tellurium nanowire (TeNW) nanocomposite. With this dual-parameter sensor, strain and temperature are effectively transduced into electrically isolated signals through the electrically conductive MXene-AgNW and thermoelectric PEDOT:PSS-TeNW components, respectively. In addition, the synergistic effect between the MXene nanosheets and PEDOT:PSS also greatly enhances the stretchability and sensitivity of the sensing devices. These properties enable the nanocomposite to decouple responses between temperature and strain stimuli with an accurate temperature resolution of 0.2 °C and a gauge factor of up to 1933.3 in a working strain range broader than 60%.


Assuntos
Nanocompostos , Nanofios , Condutividade Elétrica , Prata , Temperatura
13.
Aging (Albany NY) ; 12(9): 8321-8338, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381753

RESUMO

Couples are delaying childbearing in recent decades. While women experience a notable decrease in oocyte production in their late thirties, the effect of advanced paternal age on reproduction is incompletely understood. Herein, we observed that numerous miRNAs, including miR-574, increased in the sperm of aging males, as indicated by high-throughput sequencing. We demonstrated that miR-574 was upregulated in the sperm of two aging mouse models and was related to inferior sperm motility as an adverse predictor. Moreover, we proved that miR-574 suppressed mitochondrial function and reduced cellular ATP production in GC2 cells. Mechanistically, we demonstrated that miR-574 regulated mitochondrial function by directly targeting mt-ND5. Our study revealed an important role of miR-574 in sperm function in aging males and provided a fresh view to comprehend the aging process in sperm.


Assuntos
Trifosfato de Adenosina/metabolismo , Envelhecimento , Regulação da Expressão Gênica , MicroRNAs/genética , Mitocôndrias/metabolismo , Motilidade Espermática/genética , Espermatozoides/metabolismo , Idoso , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Regulação para Cima
14.
Chem Soc Rev ; 48(6): 1741-1786, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30601498

RESUMO

The development of intrinsically stretchable electronics poses great challenges in synthesizing elastomeric conductors, semiconductors and dielectric materials. While a wide range of approaches, from special macrostructural engineering to molecular synthesis, have been employed to afford stretchable devices, this review surveys recent advancements in employing various morphological and nanostructural control methods to impart mechanical flexibility and/or to enhance electrical properties. The focus will be on (1) embedding percolation networks of one-dimensional conductive materials such as metallic nanowires and carbon nanotubes in an elastomer matrix to accommodate large external deformation without imposing a large strain along the one-dimensional materials, (2) design strategies to achieve intrinsically stretchable semiconductor materials that include direct blending of semiconductors with elastomers and synthesizing semiconductor polymers with appropriate side chains, backbones, cross-linking networks, and flexible blocks, and (3) employing interpenetrating polymer networks, bottlebrush structures and introducing inclusions in stretchable polymeric dielectric materials to improve electrical performance. Moreover, intrinsically stretchable electronic devices based on these materials, such as stretchable sensors, heaters, artificial muscles, optoelectronic devices, transistors and soft humanoid robots, will also be described. Limitations of these approaches and measures to overcome them will also be discussed.

15.
ACS Appl Mater Interfaces ; 10(48): 41637-41644, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395431

RESUMO

Personal cooling technologies (PCTs) locally control the temperature of an individual instead of a whole building and are thus energy saving. However, most PCTs still consume energy and are heavy in weight, restricting their application among human beings. To achieve personal thermal comfort and no energy consumption on hot summer days, we designed a bilayer structure fabric with high thermal comfort by increasing the dissipation of human thermal radiation and reducing solar energy absorption simultaneously. The fabric consisted of two layers, including a polyethylene film with nanopores (100-1000 nm in pore size) and a film made of nylon 6 nanofibers (ca. 100 nm in diameter) with beads (ca. 230 nm in diameter), which could increase the visible light reflectance but not affect the infrared wave radiation. Therefore, the designed fabric showed a high heat dissipation power, which was 14.13, 17.93, and 17.93 W/m2 higher than that of the selected traditional textiles of cotton, linen, and odile, respectively, suggesting good cooling capability. Its cooling performance was better than those reported by the previous research works even at a higher ambient temperature. Meanwhile, the moisture penetrability and hygroscopic property results indicated that the wearing comfort of the designed fabric reached the levels of the selected traditional textiles.


Assuntos
Temperatura Corporal , Raios Infravermelhos , Nylons , Polietileno , Têxteis , Humanos
16.
Aging (Albany NY) ; 10(10): 2991-3004, 2018 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368232

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is capable of inducing a variety of biological effects, and the regulation of the Nrf2 signaling pathway is closely related to longevity. To find out whether the nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in oocyte aging or not which may cause reduced female fertility, a series of biological methods was applied, including oocyte collection and culture, micro injection, RNA interference, western blotting, immunofluorescence and confocal microscopy, and quantitative real-time PCR.Our data demonstrated that Nrf2 depletion disrupted oocyte maturation and spindle/chromosome organization by suppressing Cyclin B1 expression. Sirtuin 1 (Sirt1) depletion reduced Nrf2 expression, which indicated the existence of the Sirt1-Nrf2-Cyclin B1 signaling pathway in mouse oocytes. Additionally, immunoblotting results reflected a lower Nrf2 protein level in oocytes from aged mice, and maternal age-associated meiotic defects can be ameliorated through overexpression of Nrf2, which supported the hypothesis that decreased Nrf2 is an important factor contributing toward oocyte age-dependent deficits. Furthermore, we show that the expression of Nrf2 is related to female age in ovarian granular cells, suggesting that the decreased expression of Nrf2 may be related to the decline in the reproductive capacity of older women.


Assuntos
Senescência Celular , Ciclina B1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oócitos/enzimologia , Sirtuína 1/metabolismo , Adulto , Animais , Células Cultivadas , Ciclina B1/genética , Feminino , Humanos , Meiose , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Oócitos/patologia , Reprodução , Transdução de Sinais , Sirtuína 1/genética , Fuso Acromático/enzimologia , Fuso Acromático/patologia , Adulto Jovem
17.
Reprod Biol Endocrinol ; 16(1): 98, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333041

RESUMO

The Sertoli cell is the only somatic cell within the seminiferous tubules, and is vital for testis development and spermatogenesis. Rosiglitazone (RSG) is a member of the thiazolidinedione family and is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. It has been reported that RSG protects various types of cells from fatty acid-induced damage. However, whether RSG serves a protective role in Sertoli cells against palmitic acid (PA)-induced toxicity remains to be elucidated. Therefore, the aim of the present study was to investigate the effect of RSG on PA-induced cytotoxicity in Sertoli cells. MTT assay and Oil Red O staining revealed that RSG ameliorated the PA-induced decrease in TM4 cell viability, which was accompanied by an alleviation of PA-induced lipid accumulation in cells. In primary mouse Sertoli cells, RSG also showed similar protective effects against PA-induced lipotoxicity. Knockdown of PPARγ verified that RSG exerted its protective role in TM4 cells through a PPARγ-dependent pathway. To evaluate the mechanism underlying the protective role of RSG on PA-induced lipotoxicity, the present study analyzed the effects of RSG on PA uptake, and the expression of genes associated with both fatty acid oxidation and triglyceride synthesis. The results demonstrated that although RSG did not affect the endocytosis of PA, it significantly elevated the expression of carnitine palmitoyltransferase (CPT)-1A, a key enzyme involved in fatty acid oxidation, which indicated that the protective effect of RSG may have an important role in fatty acid oxidation. On the other hand, the expression of CPT1B was not affected by RSG. Moreover, the expression levels of diacylglycerol O-acyltransferase (DGAT)-1 and DGAT2, both of which encode enzymes catalyzing the synthesis of triglycerides, were not suppressed by RSG. The results indicated that RSG reduced PA-induced lipid accumulation by promoting fatty acid oxidation mediated by CPT1A. The effect of RSG in protecting cells from lipotoxicity was also found to be specific to Sertoli cells and hepatocytes, and not to other cell types that do not store excess lipid in large quantities, such as human umbilical vein endothelial cells. These findings provide insights into the cytoprotective effects of RSG on Sertoli cells and suggest that PPARγ activation may be a useful therapeutic method for the treatment of Sertoli cell dysfunction caused by dyslipidemia.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Palmítico/toxicidade , Rosiglitazona/farmacologia , Células de Sertoli/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos ICR , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , Células de Sertoli/metabolismo
18.
ACS Appl Mater Interfaces ; 10(14): 11941-11949, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557166

RESUMO

Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

19.
J Reprod Dev ; 64(1): 49-55, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29249781

RESUMO

Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M phase that is dependent on cyclin B-CDK1 complex.


Assuntos
Ciclo Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Animais , Ciclo Celular/fisiologia , Regulação para Baixo/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Extratos Vegetais/farmacologia , Quassinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
ACS Nano ; 11(11): 11368-11375, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29112377

RESUMO

A light-emitting touch-responsive device (LETD) for instantaneous visualization of pressure mapping is reported. The LETD integrates an organometal halide perovskite polymer composite emissive layer and a flexible silver nanowire polyurethane composite transparent electrode. The composite emissive layer contains methylammonium lead bromide nanocrystals uniformly dispersed in a poly(ethylene oxide) (PEO) matrix and emits an intense green luminescence that peaks at 529 nm. The PEO matrix promotes the formation of small perovskite grains (∼20 nm) and a pinhole-free composite film with surface roughness of only 2.96 nm. The composite transparent electrode is separated from the emissive layer with a 100 µm thick spacer. When a local pressure is applied, a Schottky contact is formed instantaneously between the metal and the emissive layer, and electroluminescence is produced at voltages as low as 2.5 V and reaches 1030 cd/m2 at 6 V. The transparent LETD has approximately 68% transparency. It can be bent to a 6 mm radius when polyethylene terephthalate is used as the substrate. The perovskite LETD has fast response and can be pixelated to offer potential applications in robotics, motion detection, fingerprint devices, and interactive wallpapers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...