Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 69(4): 325-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790078

RESUMO

Chemoresistance is one of the main factors of treatment failure of cervical cancer (CC). Here, we intended to discover the role and mechanism of miR-509-5p in the paclitaxel chemoresistance of CC cells. RT-PCR was conducted to verify miR-509-3p expression. HCC94 and C-33A paclitaxel-resistant CC cell models were constructed. Additionally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were performed to verify the viability and apoptosis of HCC94 and C-33A cells after upregulating miR-509-3p. Besides, the downstream target of miR-509-3p was analyzed by bioinformatics, and the targeted relationship between miR-509-3p and RAC1 was identified by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Further, the expression of apoptotic proteins (Bcl2, Bax, and Caspase3) and the RAC1/PAK1/LIMK1/Cofilin pathway was monitored by Western blot. The result showed that upregulating miR-509-3p markedly inhibited the viability and promoted the apoptosis of CC cells. On the other hand, miR-509-3p was distinctly downregulated in paclitaxel-resistant HCC94 and C-33A cells (vs. normal cells). The transfection of miR-509-3p mimics notably increased their sensitivity to paclitaxel. Meanwhile, RAC1 was found as the potential target of miR-509-3p in bioinformatics analysis. Moreover, the RAC1/p21 (RAC1) activated kinase 1 (PAK1)/LIM kinase 1 (LIMK1)/Cofilin pathway was significantly activated in paclitaxel-resistant HCC94 and C-33A cells, while miR-509-3p overexpression significantly inactivated this pathway. Additionally, downregulation of RAC1 also partly reversed the paclitaxel-resistance of CC cells and inhibited PAK1/LIMK1/Cofilin. All in all, miR-509-3p enhances the apoptosis and chemosensitivity of CC cells by regulating the RAC1/PAK1/LIMK1/Cofilin pathway.

2.
Opt Lett ; 45(9): 2526-2529, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356807

RESUMO

Fabry-Perot-based ultrasound sensors at fiber tips have performed high sensitivity and immunity of electromagnetic interference with a relatively compact size. Nevertheless, the reverberation at fiber tips causes a strong noise that degrades the sensing capability. Here we propose a fiber optical-based ultrasound sensor with three design approaches to reduce the reverberation, including designs with an eccentric core, absorptive shield, and arc edge. The effect was experimentally validated with a photoacoustic signal excitation. Compared with bare single-mode fibers in simulation, the low-reverberation design increased the signal-to-noise ratio by 32.1 dB with identical excitation. The experimental results demonstrated the "clean" response with almost invisible reverberations, which was validated by a commercial hydrophone. This research solved the reverberation problems and provided a low-noise design for fiber optic ultrasound sensing.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32195227

RESUMO

Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)-based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.

4.
Opt Lett ; 44(23): 5852-5855, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774796

RESUMO

Ultrasound imaging has been widely used in medical diagnosis due to its noninvasive, radiation-free, and real-time features. Optical resonance-based ultrasound sensors possess high sensitivity and broad bandwidth, but they need to operate in specific laser wavelengths or angles, which restricts their application in array sensing. Non-resonance-based optical sensing arrays did not perform with sufficient bandwidths or frame rates. Here we propose a fiber optic-based ultrasound sensing array with relatively high sensitivity, wide bandwidth, and three-dimensional (3D) sensing capabilities, which is potentially useful in medical imaging. Specifically, we experimentally demonstrated that the optical ultrasound sensor exhibited a noise equivalent pressure of 165 Pa, pressure nonlinearity of ${\lt 5}\% $<5%, $ - {3}\,\,{\rm dB}$-3dB angular uniformity of $ \pm {71}^\circ ,$±71∘, and $ - {6}\,\,{\rm dB}$-6dB bandwidth from $\sim{0}$∼0 to 27.2 MHz. For 3D sensing capabilities in spherical coordinates, the errors of the radial distance were within 5%, and the errors for the polar and azimuthal angles were within 4° and 2°, respectively. This demonstrated the viability and high performance of the array for 3D ultrasound sensing.


Assuntos
Tecnologia de Fibra Óptica , Interferometria/instrumentação , Lasers , Ondas Ultrassônicas
5.
Nucleic Acids Res ; 47(21): 11461-11475, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31647102

RESUMO

Application of CRISPR-based technologies in non-model microorganisms is currently very limited. Here, we reported efficient genome engineering of an important industrial microorganism, Zymomonas mobilis, by repurposing the endogenous Type I-F CRISPR-Cas system upon its functional characterization. This toolkit included a series of genome engineering plasmids, each carrying an artificial self-targeting CRISPR and a donor DNA for the recovery of recombinants. Through this toolkit, various genome engineering purposes were efficiently achieved, including knockout of ZMO0038 (100% efficiency), cas2/3 (100%), and a genomic fragment of >10 kb (50%), replacement of cas2/3 with mCherry gene (100%), in situ nucleotide substitution (100%) and His-tagging of ZMO0038 (100%), and multiplex gene deletion (18.75%) upon optimal donor size determination. Additionally, the Type I-F system was further applied for CRISPRi upon Cas2/3 depletion, which has been demonstrated to successfully silence the chromosomally integrated mCherry gene with its fluorescence intensity reduced by up to 88%. Moreover, we demonstrated that genome engineering efficiency could be improved under a restriction-modification (R-M) deficient background, suggesting the perturbance of genome editing by other co-existing DNA targeting modules such as the R-M system. This study might shed light on exploiting and improving CRISPR-Cas systems in other microorganisms for genome editing and metabolic engineering practices.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Engenharia Metabólica/métodos , Zymomonas/genética , Sistemas CRISPR-Cas/genética , Clonagem Molecular/métodos , Deleção de Genes , Genoma Bacteriano/genética , Organismos Geneticamente Modificados , Plasmídeos/genética , Plasmídeos/metabolismo , Zymomonas/metabolismo
6.
Small ; 15(45): e1903259, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31559695

RESUMO

Flexible self-standing transitional metal sulfides (TMSs)/carbon nanoarchitectures have attracted widespread research interests for sodium ion batteries (SIBs), thanks to their enormous capability to address intrinsic issues of TMSs for SIBs applications. However, controllable synthesis of hierarchical hybrid structures is always laborious and involves complicated procedures. Herein, a simple yet general and scalable adsorption-annealing strategy is first devised to finely construct core-shell carbon-coated TMSs (TMSs@C, including Co9 S8 @C, FeS@C, Ni3 S2 @C, MnS@C, and ZnS@C) nanoparticles anchored on 3D N-doped carbon foam (3DNCF) via the coordination and hydrogen-bond adsorption. Benefiting from synergistic contributions from strong chemical affinity between nanodimensional TMSs and 3DNCF, efficient electronic/ionic transport channels, as well as a uniform carbon accommodating layer, the resulted self-standing TMSs@C/3DNCF electrodes exhibit distinguished sodium storage performances, including large reversible capacities, high rate behaviors, and exceptional long-span cycle stability in both half cells and flexible full devices. More significantly, the smart methodology developed holds huge promise for commercialization of binder-free TMSs@C/3DNCF anodes toward advanced flexible SIBs.

7.
Chemistry ; 25(4): 1076-1082, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30375695

RESUMO

Reaching the full potential of solar cells based on photo-absorbers of organic-inorganic hybrid perovskites requires highly efficient charge extraction at the interface between perovskite and charge transporting layer. This demand is generally challenged by the presence of under-coordinated metal or halogen ions, causing surface charge trapping and resultant recombination losses. These problems can be tackled by introducing a small molecule interfacial anchor layer based on dimethylbiguanide (DMBG). Benefitting from interactions between the nitrogen-containing functional groups in DMBG and unsaturated ions in CH3 NH3 PbI3 perovskites, the electron extraction of TiO2 is dramatically improved in association with reduced Schottky-Read-Hall recombination, as revealed by photoluminescence spectroscopy. As a consequence, the power conversion efficiency of CH3 NH3 PbI3 solar cells is boosted from 17.14 to 19.1 %, showing appreciably reduced hysteresis. The demonstrated molecular strategy based on DMBG enables one to achieve meliorations on key figures of merit in halide perovskite solar cells with improved stability.

8.
Int J Syst Evol Microbiol ; 68(5): 1672-1677, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29616891

RESUMO

A novel, alkaliphilic, psychrotolerant, facultative anaerobe, designated CP1T, was isolated from sandy soil near the Davis Station in Antarctica. The short-rod-shaped cells displayed Gram-positive staining and did not form spores. Strain CP1T was able to grow at temperatures between 4 and 36 °C, pH 6.0-9.5, and in the presence of up to 5.0 % (w/v) NaCl. 16S rRNA gene and multilocus (pheS, rpoA, and atpA) sequence analysis revealed Carnobacterium mobile DSM 4848T and Carnobacterium iners LMG 26642T as the closest relatives (97.4 and 97.1 % 16S rRNA gene sequence similarity, respectively). The genomic G+C content was 38.1 mol%, and DNA-DNA hybridization with DSM 4848T revealed 32.4±3.4 % similarity. The major fatty acid components were C14 : 0 and C16 : 1ω9c. The cell wall contained meso-diaminopimelic acid and was of peptidoglycan type A1γ. Based on physiological, genotypic and biochemical characteristics, strain CP1T represents a novel species of the genus Carnobacterium for which the name Carnobacterium antarcticum sp. nov. is proposed. The type strain is CP1T (=DSM 103363T=CGMCC 1.15643T).


Assuntos
Carnobacterium/classificação , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Carnobacterium/genética , Carnobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Fertil Steril ; 108(2): 346-356.e1, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28778283

RESUMO

OBJECTIVE: To report the 12-month results of the first human uterus transplantation case using robot-assisted uterine retrieval. This type of transplantation may become a treatment for permanent uterine factor infertility. DESIGN: Case study. SETTING: University hospital. PATIENT(S): A 22-year-old woman with complete müllerian agenesis who underwent a previous surgery for vaginal reconstruction. The live uterine donor was her mother. INTERVENTION(S): The uterus transplantation procedure consisted of robot-assisted uterine procurement, orthotopic replacement and fixation of the retrieved uterus, revascularization, and end-to-side anastomoses of bilateral hypogastric arteries and ovarian-uterine vein to the bilateral external iliac arteries and veins. MAIN OUTCOME MEASURE(S): Data from preoperative investigations, surgery, and follow-up (12 months). RESULT(S): The duration of the donor and recipient surgeries were 6 and 8 hours, 50 minutes, respectively. No immediate perioperative complications occurred in the recipient or donor. The recipient experienced menarche 40 days after transplant surgery, and she has had 12 menstrual cycles since the surgery. No rejection episodes occurred in the recipient. CONCLUSION(S): These results demonstrate the feasibility of live-donor uterine transplantation with a low-dose immunosuppressive protocol and the role of DaVinci robotic assistance during human uterine procurement. CLINICAL TRIAL REGISTRATION NUMBER: XJZT12Z06.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/cirurgia , Anormalidades Congênitas/cirurgia , Histerectomia/métodos , Ductos Paramesonéfricos/anormalidades , Ovário/irrigação sanguínea , Procedimentos Cirúrgicos Robóticos/métodos , Útero/transplante , Veias/transplante , Feminino , Humanos , Ductos Paramesonéfricos/cirurgia , Ovário/transplante , Procedimentos Cirúrgicos Reconstrutivos/métodos , Resultado do Tratamento , Adulto Jovem
10.
Sci Rep ; 7: 41011, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139677

RESUMO

Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.


Assuntos
Eletrocardiografia/métodos , Cardiopatias/diagnóstico , Aplicações da Informática Médica , Algoritmos , Automação Laboratorial/métodos , Bioestatística/métodos , Humanos
11.
Exp Biol Med (Maywood) ; 242(5): 497-504, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28056551

RESUMO

Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines. Impact statement We found that hepatitis B X-interacting protein (HBXIP) was able to activate the CD147 promoter through Sp1. In vivo, depletion of HBXIP decreased the tumor volume and weight induced by CP. Taken together, these results indicate that HBXIP promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines.


Assuntos
Antineoplásicos/uso terapêutico , Basigina/fisiologia , Cisplatino/uso terapêutico , Imunoglobulinas/fisiologia , Proteínas Nucleares/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Transativadores/fisiologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real
12.
Reprod Sci ; 24(6): 902-910, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27799458

RESUMO

Polycystic ovary syndrome (PCOS) is a complex, heterogeneous endocrine and metabolic disorder affecting 5% to 10% of reproductive-age women. A high rate of granulosa cell (GC) proliferation contributes to the abnormal folliculogenesis in patients with PCOS. Evidence has proved that dysregulation of microRNAs is involved in the pathogenesis of PCOS. In this study, we investigated the effect of miR-145 on cell proliferation and the underlying mechanism of miR-145 in isolated human GCs from the aspirated follicular fluid in women with PCOS. Our findings showed that miR-145 is downregulated in human GCs from PCOS. The miR-145 mimics suppress cell proliferation and promoted cell apoptosis in human GCs from PCOS. However, miR-145 inhibitor promotes cell proliferation and inhibited cell apoptosis. Moreover, using a dual-luciferase reporter assay, we confirmed that the insulin receptor substrate 1 (IRS1) gene is a direct target of miR-145. The miR-145 mimics inhibited messenger RNA and protein IRS1 expression levels, and silencing of IRS1 by small interfering RNA inhibits human GC proliferation, but IRS1 overexpression abrogates the suppressive effect of miR-145 mimics. Furthermore, miR-145 mimics can inhibit the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The IRS1 overexpression abrogates the suppressive effect of miR-145 mimics on MAPK/ERK signaling pathways. Together, miR-145 mimics suppress cell proliferation by targeting and inhibiting IRS1 expression to inhibit MAPK/ERK signaling pathways. Our study further found that high concentrations of insulin decreases the miR-145 expression, upregulates IRS1, and promotes cell proliferation. These observations showed that miR-145 is a novel and promising molecular target for improving the dysfunction of GCs in PCOS.


Assuntos
Proliferação de Células/fisiologia , Células da Granulosa/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Inativação Gênica , Células da Granulosa/efeitos dos fármacos , Humanos , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Opt Lett ; 41(18): 4158-61, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628346

RESUMO

We propose a fiber Bragg grating (FBG) sensor interrogation system utilizing a III-V vertical cavity surface emitting laser (VCSEL) as the on-chip light source. Binary blazed grating (BBG) for coupling between III-V VCSEL and silicon-on-insulator (SOI) waveguides is demonstrated for interrogation of the FBG sensor. The footprint size of the BBG is only 5.62 µm×5.3 µm, and each BBG coupler period has two subperiods. The diameter of the VCSEL's emitting window is 5 µm, which is slightly smaller than that of the BBG coupler, to be well-matched with the proposed structure. Results show that the coupling efficiency from vertical cavities of the III-V VCSEL to the in-plane waveguides reached as high as 32.6% when coupling the 1550.65 nm light. The heterogeneous integration of the III-V VCSEL and SOI waveguides by BBG plays a fundamental role in inducing a great breakthrough to the miniaturization of an on-chip light source for optical fiber sensing.

14.
Anal Biochem ; 512: 103-109, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555440

RESUMO

Development of a simple method for preparation of stable open tubular (OT) columns for proteins separation by capillary electrochromatography is still challenging. In this work, the titanium oxide (TiO2) nanoparticles coated OT column was successfully prepared for separation of proteins by capillary electrochromatography. The polydopamine (PDA) film was first formed in the inner surface of a fused-silica capillary by the self-polymerization of dopamine under alkaline conditions. Then the TiO2 coating was deposited onto the surface of pre-modified capillary with PDA by a liquid phase deposition process. The plentifully active hydroxyl groups in PDA coating can chelate with Ti(4+) to boost the nucleation and growth of TiO2 film. The as-prepared TiO2 coated OT column was characterized by scanning electron microscopy and measurement of electroosmotic flow. Furthermore, the influence of liquid phase deposition time on the TiO2 coating was investigated. The TiO2 coated OT column was used for successful separation of two variants of ß-lactoglobulin and eight glycoisoforms of ovalbumin. The column demonstrated good repeatability and stability. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.7%. Moreover, the application of the column was verified by successful separation of acidic proteins in egg white.


Assuntos
Eletrocromatografia Capilar/métodos , Indóis/química , Lactoglobulinas/isolamento & purificação , Ovalbumina/isolamento & purificação , Polímeros/química , Titânio/química , Lactoglobulinas/química , Nanopartículas , Ovalbumina/química
15.
PLoS One ; 11(8): e0160367, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479442

RESUMO

Ice nucleation protein (INP) is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N) to improve its surface display efficiency for human Arginase1 (ARG1). Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1) by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg) to L-Ornithine (L-Orn) in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.


Assuntos
Arginase/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Arginase/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Citometria de Fluxo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Microscopia de Fluorescência , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ornitina/metabolismo , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Translocação Genética
16.
Anal Chim Acta ; 929: 23-30, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27251945

RESUMO

The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins.


Assuntos
Etilenoglicol/química , Óxido Ferroso-Férrico/química , Indóis/química , Fosfoproteínas/química , Polímeros/química , Titânio/química , Adsorção , Animais , Caseínas/química , Caseínas/isolamento & purificação , Bovinos , Fenômenos Magnéticos , Fosfoproteínas/isolamento & purificação , Propriedades de Superfície , Água/química
17.
Tumour Biol ; 37(9): 11883-11891, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27059733

RESUMO

Paclitaxel resistance becomes common in patients with aggressive ovarian cancer and results in recurrence after conventional therapy. Galectin-3 is a multifunctional lectin associated with cell migration, cell proliferation, cell adhesion, and cell-cell interaction in tumor cells. Whether circulating galectin-3 is involved in paclitaxel resistance in ovarian cancer remains unknown. The current study investigated the effect of galectin-3 on toll-like receptor 4 (TLR4) signaling and thus paclitaxel resistance. With blood and cancer tissue samples obtained from 102 patients, we identified associations between serum galectin-3 level or TLR4 expression and paclitaxel resistance phenotype. In vitro, treatment with exogenous galectin-3 restored cell survival and migration of SKOV-3 and ES-2 cells was decreased by galectin-3 silencing and paclitaxel treatment. Furthermore, exogenous galectin-3 boosted expression of TLR4, MyD88, and p-p65, as well as interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF) release induced by paclitaxel. Moreover, galectin-3 inhibited the interaction between TLR4 and caveolin-1 (Cav-1) in SKOV-3 and ES-2 cells. In addition, overexpression of Cav-1 dampened the expression of MyD88 and p-p65 stimulated by galectin-3 and enhanced apoptosis in SKOV-3 cells under paclitaxel exposure. In summary, our study elucidated that exogenous galectin-3 might induce paclitaxel resistance through TLR4 signaling activation by inhibiting TLR4-Cav-1 interaction, revealing a novel insight into paclitaxel resistance induction.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Galectina 3/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Receptor 4 Toll-Like/metabolismo , Adulto , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Galectina 3/sangue , Galectina 3/genética , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
18.
Bioengineered ; 7(3): 198-204, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27116398

RESUMO

Cellulose is an abundant natural polysaccharide that is universally distributed. It can be extracted from corncobs, which are inexpensive, easily accessible, renewable, and environmentally friendly. A common strategy for effectively utilizing cellulose is efficient heterogeneous expression of cellulase genes in Saccharomyces cerevisiae. However, the improvement of cellulose utilization is a relevant issue. Based on our previous findings, we constructed an integrated secretion expression vector, pHBM368-pgk, containing a constitutive promoter sequence. Three genetically modified S. cerevisiae strains containing heterologous ß-glucosidase, exoglucanase, and endoglucanase genes were constructed. The results of a 1-L bioreactor fermentation process revealed that the mixed recombinant S. cerevisiae could efficiently carry out simultaneous saccharification and fermentation (SSF) by using corncobs as the sole carbon source. The ethanol concentration reached 6.37 g/L after 96 hours of fermentation, which was about 3 times higher than that produced by genetically modified S. cerevisiae with the inducible promoter sequence. To investigate the microstructure characteristics of hydrolyzed corncobs during the fermentation process, corncob residues were detected by using a scanning electron microscope. This study provides a feasible method to improve the effect of SSF using corncobs as the sole carbon source.


Assuntos
Celulase/genética , Celulose 1,4-beta-Celobiosidase/genética , Saccharomyces cerevisiae/enzimologia , Transgenes , Zea mays/metabolismo , beta-Glucosidase/genética , Reatores Biológicos , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Etanol/metabolismo , Fermentação , Engenharia Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Organismos Geneticamente Modificados , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Resíduos , Zea mays/ultraestrutura , beta-Glucosidase/metabolismo
19.
Oncol Lett ; 11(1): 551-558, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870246

RESUMO

Breast cancer 1, early onset (BRCA1)-interacting protein 1 (BRIP1), a DNA-dependent adenosine triphosphatase and DNA helicase, is required for BRCA-associated DNA damage repair functions, and may be associated with the tumorigenesis and aggressiveness of various cancers. The present study investigated the expression of BRIP1 in normal cervix tissues and cervical carcinoma via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry assays. BRIP1 expression was observed to be reduced in squamous cancer tissue and adenocarcinoma compared with normal cervix tissue, and there were significant correlations between the reduction in BRIP1 expression and unfavorable variables, including the International Federation of Gynecologists and Obstetricians stage and presence of lymph node metastases. In order to elucidate the role of BRIP1 in cervical cancer, a BRIP1 recombinant plasmid was constructed and overexpressed in a cervical cancer cell line (HeLa). The ectopic expression of BRIP1 markedly inhibited the tumorigenic properties of HeLa cells in vitro, as demonstrated by decreased cell growth, invasion and adhesion, and increased cell apoptosis. In addition, it was identified that the inhibitory tumorigenic properties of BRIP1 may be partly attributed to the attenuation of RhoA GTPase activity. The present study provides a novel insight into the essential role of BRIP1 in cervical cancer, and suggests that BRIP1 may be a useful therapeutic target for the treatment of this common malignancy.

20.
J Chromatogr A ; 1424: 18-26, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26596870

RESUMO

In this report, the Cu(2+)-immobilized magnetic particles were prepared by a facile route and they were used as adsorbents for removal of high abundance of hemoglobin in blood based on immobilized metal affinity chromatography. Ethylenediaminetetraacetic acid modified magnetic particles (EDTA-Fe3O4) were first synthesized through a one-pot solvothermal method and then charged with copper ions. The as-prepared Cu(2+)-EDTA-Fe3O4 particles were characterized by Fourier transform infrared spectrometry, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and zeta potential. Factors affecting the adsorption of bovine hemoglobin on Cu(2+)-EDTA-Fe3O4 particles (including contact time, solution pH, ionic strength and initial concentration of protein) were investigated. The adsorption process followed a pseudo-second-order kinetic model and the adsorption equilibrium could be achieved in 60min. The adsorption isotherm data could be well described by a Langmuir model and the maximum adsorption capacity was 1250mgg(-1). The as-prepared particles showed high efficiency and excellent selectivity for removal of hemoglobin from bovine and human blood. The removal process integrated the selectivity of immobilized metal affinity chromatography and the convenience of magnetic separation. The results demonstrated that Cu(2+)-EDTA-Fe3O4 particles had potential application in removal of abundant histidine-rich proteins in biomedical diagnosis analysis.


Assuntos
Complexos de Coordenação/química , Cobre/química , Ácido Edético/química , Hemoglobinas/isolamento & purificação , Nanopartículas de Magnetita/química , Adsorção , Animais , Bovinos , Humanos , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...