Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 33(10): 2059-2075.e10, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536344

RESUMO

Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.

2.
J Diabetes Res ; 2021: 5398645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791389

RESUMO

Objective: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses. Methods: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses. Results: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. Conclusion: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression.

3.
Redox Biol ; 41: 101929, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714738

RESUMO

BACKGROUND: Mesenchymal stem cell therapy improves ischemic heart failure via incompletely understood mechanisms. C1q-TNFα related protein-9 (CTRP9) is a novel anti-oxidative cardiokine capable of improving the local microenvironment and cell survival by its c-terminal active globular domain (gCTRP9). The current study attempted to: 1) identify active gCTRP9 c-terminal polypeptides with stem cell protective function; 2) determine whether a lead polypeptide may enable/enhance cortical bone-derived mesenchymal stem cell (CBSC) cardioprotection against post-myocardial infarction (post-MI) remodeling; and 3) define the responsible underlying cellular/molecular mechanisms. METHODS AND RESULTS: Utilizing I-TASSER structure prediction and 3-D active site modeling, we cloned and purified 3 gCTRP9 fragments (CTRP9-237, CTRP9-277, and CTRP9-281). Their activation of cell salvage kinase was compared against gCTRP9. Among the three fragments, CTRP9-281 (a 45 residue-containing polypeptide) exerted comparable or greater ERK1/2 activation compared to gCTRP9. Treatment with CTRP9-281 or gCTRP9 significantly increased CBSC proliferation and migration, and attenuated oxidative stress-induced CBSC apoptosis. CTRP9-281 and gCTRP9 comparably upregulated SOD2 and SOD3 expression. However, CTRP9-281, not gCTRP9, upregulated FGF2 and VEGFA expression/secretion in an ERK1/2 dependent manner. Administration of gCTRP9 or CTRP9-281 alone attenuated post-MI cardiac dysfunction and improved CBSC retention in the infarcted heart in similar fashion. However, CTRP9-281 exerted greater synergistic effect with CBSC than gCTRP9 related to pro-angiogenic, anti-fibrotic, and anti-remodeling effects. Mechanistically, CTRP9-281 significantly increased SOD2-rich and VEGFA-rich exosome production by CBSC. Exosomes from CTRP9-281 treated CBSC significantly attenuated oxidative stress-induced cardiomyocyte apoptosis in vitro. An exosome generation inhibitor attenuated CTRP9-281 enhancement of CBSC cardioprotection in vivo. CONCLUSION: We identified a CTRP9 polypeptide that upregulates SOD2/SOD3 expression and improves CBSC survival/retention, similar to gCTRP9. Moreover, CTRP9-281 stimulates VEGFA-rich exosome production by CBSC, exerting superior pro-angiogenic, anti-fibrotic, and cardioprotective actions.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Adiponectina , Glicoproteínas , Proteína C , Fator de Necrose Tumoral alfa
4.
Clin Sci (Lond) ; 134(18): 2453-2467, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940654

RESUMO

Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Adiponectina/metabolismo , Sódio/metabolismo , Adiponectina/metabolismo , Animais , Pressão Sanguínea , Linhagem Celular , Diurese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Natriurese , Fosforilação , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
7.
J Am Heart Assoc ; 9(6): e012376, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32151220

RESUMO

Background Laboratory studies demonstrate glucose-insulin-potassium (GIK) as a potent cardioprotective intervention, but clinical trials have yielded mixed results, likely because of varying formulas and timing of GIK treatment and different clinical settings. This study sought to evaluate the effects of modified GIK regimen given perioperatively with an insulin-glucose ratio of 1:3 in patients undergoing cardiopulmonary bypass surgery. Methods and Results In this prospective, randomized, double-blinded trial with 930 patients referred for cardiac surgery with cardiopulmonary bypass, GIK (200 g/L glucose, 66.7 U/L insulin, and 80 mmol/L KCl) or placebo treatment was administered intravenously at 1 mL/kg per hour 10 minutes before anesthesia and continuously for 12.5 hours. The primary outcome was the incidence of in-hospital major adverse cardiac events including all-cause death, low cardiac output syndrome, acute myocardial infarction, cardiac arrest with successful resuscitation, congestive heart failure, and arrhythmia. GIK therapy reduced the incidence of major adverse cardiac events and enhanced cardiac function recovery without increasing perioperative blood glucose compared with the control group. Mechanistically, this treatment resulted in increased glucose uptake and less lactate excretion calculated by the differences between arterial and coronary sinus, and increased phosphorylation of insulin receptor substrate-1 and protein kinase B in the hearts of GIK-treated patients. Systemic blood lactate was also reduced in GIK-treated patients during cardiopulmonary bypass surgery. Conclusions A modified GIK regimen administered perioperatively reduces the incidence of in-hospital major adverse cardiac events in patients undergoing cardiopulmonary bypass surgery. These benefits are likely a result of enhanced systemic tissue perfusion and improved myocardial metabolism via activation of insulin signaling by GIK. Clinical Trial Registration URL: clinicaltrials.gov. Identifier: NCT01516138.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Soluções Cardioplégicas/administração & dosagem , Ponte Cardiopulmonar , Parada Cardíaca Induzida , Cardiopatias/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Adulto , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Soluções Cardioplégicas/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/mortalidade , China , Circulação Coronária/efeitos dos fármacos , Método Duplo-Cego , Esquema de Medicação , Metabolismo Energético/efeitos dos fármacos , Feminino , Glucose/administração & dosagem , Glucose/efeitos adversos , Parada Cardíaca Induzida/efeitos adversos , Parada Cardíaca Induzida/mortalidade , Cardiopatias/mortalidade , Hemodinâmica/efeitos dos fármacos , Mortalidade Hospitalar , Humanos , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/fisiopatologia , Potássio/administração & dosagem , Potássio/efeitos adversos , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
8.
Circ Res ; 126(7): 857-874, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32079489

RESUMO

RATIONALE: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/ß-catenin complex formation and active ß-catenin levels in the nucleus. ß-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via ß-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.


Assuntos
Tecido Adiposo/citologia , Caderinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Caderinas/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento de Hepatócito/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
9.
Circulation ; 141(12): 968-983, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-31918577

RESUMO

BACKGROUND: Diabetes mellitus exacerbates myocardial ischemia/reperfusion (MI/R) injury by incompletely understood mechanisms. Adipocyte dysfunction contributes to remote organ injury. However, the molecular mechanisms linking dysfunctional adipocytes to increased MI/R injury remain unidentified. The current study attempted to clarify whether and how small extracellular vesicles (sEV) may mediate pathological communication between diabetic adipocytes and cardiomyocytes, exacerbating MI/R injury. METHODS: Adult male mice were fed a normal or a high-fat diet for 12 weeks. sEV (from diabetic serum, diabetic adipocytes, or high glucose/high lipid-challenged nondiabetic adipocytes) were injected intramyocardially distal of coronary ligation. Animals were subjected to MI/R 48 hours after injection. RESULTS: Intramyocardial injection of diabetic serum sEV in the nondiabetic heart significantly exacerbated MI/R injury, as evidenced by poorer cardiac function recovery, larger infarct size, and greater cardiomyocyte apoptosis. Similarly, intramyocardial or systemic administration of diabetic adipocyte sEV or high glucose/high lipid-challenged nondiabetic adipocyte sEV significantly exacerbated MI/R injury. Diabetic epididymal fat transplantation significantly increased MI/R injury in nondiabetic mice, whereas administration of a sEV biogenesis inhibitor significantly mitigated MI/R injury in diabetic mice. A mechanistic investigation identified that miR-130b-3p is a common molecule significantly increased in diabetic serum sEV, diabetic adipocyte sEV, and high glucose/high lipid-challenged nondiabetic adipocyte sEV. Mature (but not primary) miR-130b-3p was significantly increased in the diabetic and nondiabetic heart subjected to diabetic sEV injection. Whereas intramyocardial injection of a miR-130b-3p mimic significantly exacerbated MI/R injury in nondiabetic mice, miR-130b-3p inhibitors significantly attenuated MI/R injury in diabetic mice. Molecular studies identified AMPKα1/α2, Birc6, and Ucp3 as direct downstream targets of miR-130b-3p. Overexpression of these molecules (particularly AMPKα2) reversed miR-130b-3p induced proapoptotic/cardiac harmful effect. Finally, miR-130b-3p levels were significantly increased in plasma sEV from patients with type 2 diabetes mellitus. Incubation of cardiomyocytes with diabetic patient sEV significantly exacerbated ischemic injury, an effect blocked by miR-130b-3p inhibitor. CONCLUSIONS: We demonstrate for the first time that miR-130b-3p enrichment in dysfunctional adipocyte-derived sEV, and its suppression of multiple antiapoptotic/cardioprotective molecules in cardiomyocytes, is a novel mechanism exacerbating MI/R injury in the diabetic heart. Targeting miR-130b-3p mediated pathological communication between dysfunctional adipocytes and cardiomyocytes may be a novel strategy attenuating diabetic exacerbation of MI/R injury.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Animais , Humanos , Masculino , Camundongos
10.
Circ Res ; 126(2): 212-228, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694459

RESUMO

RATIONALE: Obstructive sleep apnea-hypopnea syndrome, a sleep breathing disorder in which chronic intermittent hypoxia (CIH) is the primary pathology, is associated with multiple cardiovascular diseases. However, whether and how CIH may affect cardiac remodeling following myocardial infarction (MI) remains unknown. OBJECTIVE: To determine whether CIH exposure at different periods of MI may exacerbate post-MI heart failure and to identify the mechanisms underlying CIH-exacerbated post-MI remodeling. METHODS AND RESULTS: Adult male mice were subjected to MI (4 weeks) with and without CIH (4 or 8 weeks). CIH before MI (CIH+MI) had no significant effect on post-MI remodeling. However, double CIH exposure (CIH+MI+CIH) or CIH only during the MI period (MI+CIH) significantly exacerbated pathological remodeling and reduced survival rate. Mechanistically, CIH activated TGF-ß (tumor growth factor-ß)/Smad (homologs of both the Drosophila protein MAD and the C. elegans protein SMA) signaling and enhanced cardiac epithelial to mesenchymal transition, markedly increasing post-MI cardiac fibrosis. Transcriptome analysis revealed that, among 15 genes significantly downregulated (MI+CIH versus MI), Ctrp9 (a novel cardioprotective cardiokine) was one of the most significantly inhibited genes. Real-time polymerase chain reaction/Western analysis confirmed that cardiomyocyte CTRP9 expression was significantly reduced in MI+CIH mice. RNA-sequencing, real-time polymerase chain reaction, and dual-luciferase reporter assays identified that microRNA-214-3p is a novel Ctrp9 targeting miRNA. Its upregulation is responsible for Ctrp9 gene suppression in MI+CIH. Finally, AAV9 (adeno-associated virus 9)-mediated cardiac-specific CTRP9 overexpression or rCTRP9 (recombinated CTRP9) administration inhibited TGF-ß/Smad and Wnt/ß-catenin pathways, attenuated interstitial fibrosis, improved cardiac function, and enhanced survival rate in MI+CIH animals. CONCLUSIONS: This study provides the first evidence that MI+CIH upregulates miR-214-3p, suppresses cardiac CTRP9 (C1q tumor necrosis factor-related protein-9) expression, and exacerbates cardiac remodeling, suggesting that CTRP9 may be a novel therapeutic target against pathological remodeling in MI patients with obstructive sleep apnea-hypopnea syndrome.


Assuntos
Adiponectina/metabolismo , Glicoproteínas/metabolismo , Hipóxia/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Adiponectina/genética , Animais , Transição Epitelial-Mesenquimal , Glicoproteínas/genética , Humanos , Hipóxia/complicações , Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Miocárdio/patologia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Proteínas Smad/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular , Via de Sinalização Wnt
11.
Sheng Li Xue Bao ; 71(3): 485-490, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31218340

RESUMO

The incidence and mortality rates of diabetes with cardiovascular complications are continually rising, and diabetic cardiovascular disease is becoming a major public health issue that threatens human health. Acute endothelial dysfunction and chronic cellular damage caused by diabetes are important risk factors for diabetic cardiovascular disease and related mortality. Adiponectin is an adipocyte-derived molecule with significant cytoprotective effects, including the protection against diabetes-induced vascular endothelial injury. Here we review the mechanisms of adiponectin protective effects on acute vascular endothelial dysfunction and chronic structural damage induced by diabetes.


Assuntos
Adiponectina/fisiologia , Doenças Cardiovasculares/complicações , Diabetes Mellitus/patologia , Endotélio Vascular/fisiopatologia , Humanos
12.
Circulation ; 140(9): 751-764, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31220942

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (MI/R) injury is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key MI/R mediators to initiate MI/R injury. METHODS: We used a dynamic transcriptome analysis of mouse heart exposed to various MI/R periods to identify S100a8/a9 as an early mediator. Using loss/gain-of-function approaches to understand the role of S100a8/a9 in MI/R injury, we explored the mechanisms through transcriptome and functional experiment. Dynamic serum S100a8/a9 levels were measured in patients with acute myocardial infarction before and after percutaneous coronary intervention. Patients were prospectively followed for the occurrence of major adverse cardiovascular events. RESULTS: S100a8/a9 was identified as the most significantly upregulated gene during the early reperfusion stage. Knockout of S100a9 markedly decreased cardiomyocyte death and improved heart function, whereas hematopoietic overexpression of S100a9 exacerbated MI/R injury. Transcriptome/functional studies revealed that S100a8/a9 caused mitochondrial respiratory dysfunction in cardiomyocytes. Mechanistically, S100a8/a9 downregulated NDUF gene expression with subsequent mitochondrial complex I inhibition via Toll-like receptor 4/Erk-mediated Pparg coactivator 1 alpha/nuclear respiratory factor 1 signaling suppression. Administration of S100a9 neutralizing antibody significantly reduced MI/R injury and improved cardiac function. Finally, we demonstrated that serum S100a8/a9 levels were significantly increased 1 day after percutaneous coronary intervention in patients with acute myocardial infarction, and elevated S100a8/a9 levels were associated with the incidence of major adverse cardiovascular events. CONCLUSIONS: Our study identified S100a8/a9 as a master regulator causing cardiomyocyte death in the early stage of MI/R injury via the suppression of mitochondrial function. Targeting S100a8/a9-intiated signaling may represent a novel therapeutic intervention against MI/R injury. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03752515.


Assuntos
Apoptose , Calgranulina B/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Calgranulina A/sangue , Calgranulina B/genética , Calgranulina B/imunologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/etiologia , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Intervenção Coronária Percutânea , Transdução de Sinais
13.
J Biol Chem ; 293(36): 14001-14011, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30006349

RESUMO

The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the ß-adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Relaxina/metabolismo , Animais , Isoproterenol/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Ratos , Relaxina/genética , Transcrição Genética , Regulação para Cima
14.
Nat Med ; 24(1): 73-83, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227475

RESUMO

Hepatic ischemia-reperfusion (IR) injury is a common clinical issue lacking effective therapy and validated pharmacological targets. Here, using integrative 'omics' analysis, we identified an arachidonate 12-lipoxygenase (ALOX12)-12-hydroxyeicosatetraenoic acid (12-HETE)-G-protein-coupled receptor 31 (GPR31) signaling axis as a key determinant of the hepatic IR process. We found that ALOX12 was markedly upregulated in hepatocytes during ischemia to promote 12-HETE accumulation and that 12-HETE then directly binds to GPR31, triggering an inflammatory response that exacerbates liver damage. Notably, blocking 12-HETE production inhibits IR-induced liver dysfunction, inflammation and cell death in mice and pigs. Furthermore, we established a nonhuman primate hepatic IR model that closely recapitulates clinical liver dysfunction following liver resection. Most strikingly, blocking 12-HETE accumulation effectively attenuated all pathologies of hepatic IR in this model. Collectively, this study has revealed previously uncharacterized metabolic reprogramming involving an ALOX12-12-HETE-GPR31 axis that functionally determines hepatic IR procession. We have also provided proof of concept that blocking 12-HETE production is a promising strategy for preventing and treating IR-induced liver damage.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Fígado/irrigação sanguínea , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inibidores , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Metabolismo dos Lipídeos , Camundongos , Traumatismo por Reperfusão/parasitologia , Suínos
15.
Nat Med ; 24(1): 84-94, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227477

RESUMO

Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha-induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes. Hepatocyte-specific ablation of Tnfaip3 exacerbated nonalcoholic fatty liver disease- and NASH-related phenotypes in mice, including glucose metabolism disorders, lipid accumulation and enhanced inflammation, in an ASK1-dependent manner. In contrast, transgenic or adeno-associated virus-mediated TNFAIP3 gene delivery in the liver in both mouse and nonhuman primate models of NASH substantially blocked the onset and progression of the disease. These results implicate TNFAIP3 as a functionally important endogenous suppressor of ASK1 hyperactivation in the pathogenesis of NASH and identify it as a potential new molecular target for NASH therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado/enzimologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Apoptose , Dieta Hiperlipídica , Fibrose/prevenção & controle , Humanos , Inflamação/prevenção & controle , Resistência à Insulina , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Circulation ; 136(22): 2162-2177, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28978553

RESUMO

BACKGROUND: Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection. METHODS: Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9. RESULTS: Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death. CONCLUSIONS: We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.


Assuntos
Adiponectina/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Regeneração , Transdução de Sinais , Adiponectina/administração & dosagem , Adiponectina/deficiência , Adiponectina/genética , Tecido Adiposo/citologia , Animais , Apoptose , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Glicoproteínas/administração & dosagem , Glicoproteínas/deficiência , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/toxicidade , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco , Superóxido Dismutase/metabolismo , Fatores de Tempo
18.
Autophagy ; 13(11): 1855-1869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28825851

RESUMO

Macroautophagy/autophagy is increasingly recognized as an important regulator of myocardial ischemia-reperfusion (MI-R) injury. However, whether and how diabetes may alter autophagy in response to MI-R remains unknown. Deficiency of ADIPOQ, a cardioprotective molecule, markedly increases MI-R injury. However, the role of diabetic hypoadiponectinemia in cardiac autophagy alteration after MI-R is unclear. Utilizing normal control (NC), high-fat-diet-induced diabetes, and Adipoq knockout (adipoq-/-) mice, we demonstrated that autophagosome formation was modestly inhibited and autophagosome clearance was markedly impaired in the diabetic heart subjected to MI-R. adipoq-/- largely reproduced the phenotypic alterations observed in the ischemic-reperfused diabetic heart. Treatment of diabetic and adipoq-/- mice with AdipoRon, a novel ADIPOR (adiponectin receptor) agonist, stimulated autophagosome formation, markedly increased autophagosome clearance, reduced infarct size, and improved cardiac function (P < 0.01 vs vehicle). Mechanistically, AdipoRon caused significant phosphorylation of AMPK-BECN1 (Ser93/Thr119)-class III PtdIns3K (Ser164) and enhanced lysosome protein LAMP2 expression both in vivo and in isolated adult cardiomyocytes. Pharmacological AMPK inhibition or genetic Prkaa2 mutation abolished AdipoRon-induced BECN1 (Ser93/Thr119)-PtdIns3K (Ser164) phosphorylation and AdipoRon-stimulated autophagosome formation. However, AdipoRon-induced LAMP2 expression, AdipoRon-stimulated autophagosome clearance, and AdipoRon-suppressed superoxide generation were not affected by AMPK inhibition. Treatment with MnTMPyP (a superoxide scavenger) increased LAMP2 expression and stimulated autophagosome clearance in simulated ischemic-reperfused cardiomyocytes. However, no additive effect between AdipoRon and MnTMPyP was observed. Collectively, these results demonstrate that hypoadiponectinemia impairs autophagic flux, contributing to enhanced MI-R injury in the diabetic state. ADIPOR activation restores AMPK-mediated autophagosome formation and antioxidant-mediated autophagosome clearance, representing a novel intervention effective against MI-R injury in diabetic conditions.


Assuntos
Autofagossomos/metabolismo , Autofagia , Diabetes Mellitus Experimental/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Receptores de Adiponectina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/genética , Animais , Proteína Beclina-1/metabolismo , Células Cultivadas , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Metaloporfirinas/farmacologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Piperidinas/farmacologia
19.
Circ J ; 81(7): 920-928, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28603178

RESUMO

Cardiovascular disease (CVD) is the greatest cause of death, accounting for nearly one-third of all deaths worldwide. The increase in obesity rates over 3 decades is widespread and threatens the public health in both developed and developing countries. Obesity, the excessive accumulation of visceral fat, causes the clustering of metabolic disorders, such as type 2 diabetes, dyslipidemia, and hypertension, culminating in the development of CVD. Adipose tissue is not only an energy storage organ, but an active endocrine tissue producing various biologically active proteins known as adipokines. Since leptin, a central regulator of food intake and energy expenditure, was demonstrated to be an adipose-specific adipokine, attention has focused on the identification and characterization of unknown adipokines to clarify the mechanisms underlying obesity-related disorders. Numerous adipokines have been identified in the past 2 decades; most adipokines are upregulated in the obese state. Adipokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, and resistin are pro-inflammatory, and exacerbate various metabolic and cardiovascular diseases. However, a small number of adipokines, including adiponectin, are decreased by obesity, and generally exhibit antiinflammatory properties and protective functions against obesity-related diseases. Collectively, an imbalance in the production of pro- and antiinflammatory adipokines in the obese condition results in multiple complications. In this review, we focus on the pathophysiologic roles of adipokines with cardiovascular protective properties.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Dislipidemias , Hipertensão , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/complicações , Dislipidemias/metabolismo , Dislipidemias/patologia , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia
20.
Circulation ; 135(21): 2041-2057, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28249877

RESUMO

BACKGROUND: Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. METHODS: We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. RESULTS: ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-ß signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. CONCLUSIONS: Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-ß signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Fibroblastos/enzimologia , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , MAP Quinase Quinase 3/metabolismo , Miocárdio/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilação , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Angiotensina II , Animais , Sítios de Ligação , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , MAP Quinase Quinase 3/genética , Masculino , Camundongos Knockout , Miocárdio/patologia , Fenótipo , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...