Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Circ Res ; 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34763521

RESUMO

Background: Acute myocardial infarction (AMI) patients suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of AMI upon adipocyte function is unclear. Small extracellular vesicles (sEV) critically contribute to organ-organ communication. Whether and how sEV mediate post-MI cardiomyocyte/adipocyte communication remain unknown.Methods Plasma sEV were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared to Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, adiponectin (APN). Pla-sEVMI/R activated two (PERK-CHOP and ATF6-EDEM pathways) of the three endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo MI/R (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. Results: An unbiased approach identified EDEM3 as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. Conclusion: We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched sEV. Targeting sEV-mediated cardiomyocyte-adipocyte pathologic communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.

2.
Life Sci ; 284: 119935, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508760

RESUMO

OBJECTIVE: Atherosclerotic vascular disease remains the principal cause of death and disability among patients with type 2 diabetes. Unfortunately, the problem is not adequately resolved by therapeutic strategies with currently available drugs or approaches that solely focus on optimal glycemic control. To identify the key contributors and better understand the mechanism of diabetic atherosclerotic vascular disease, we aimed to elucidate the key genetic characteristics and pathological pathways in atherosclerotic vascular disease through nonbiased bioinformatics analysis and subsequent experimental demonstration and exploration in diabetic atherosclerotic vascular disease. METHODS AND RESULTS: Sixty-eight upregulated and 23 downregulated genes were identified from the analysis of gene expression profiles (GSE30169 and GSE6584). A comprehensive bioinformatic assay further identified that ferroptosis, a new type of programmed cell death and HMOX1 (a gene that encodes heme oxygenase), were vital factors in atherosclerotic vascular disease. We further demonstrated that diabetes significantly increased ferroptosis and HMOX1 levels compared to normal controls. Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated diabetic atherosclerosis, suggesting the causative role of ferroptosis in diabetic atherosclerosis development. At the cellular level, Fer-1 ameliorated high glucose high lipid-induced lipid peroxidation and downregulated ROS production. More importantly, HMOX1 knockdown attenuated Fe2+ overload, reduced iron content and ROS, and alleviated lipid peroxidation, which led to a reduction in ferroptosis in diabetic human endothelial cells. CONCLUSIONS: We demonstrated that HMOX1 upregulation is responsible for the increased ferroptosis in diabetic atherosclerosis development, suggesting that HMOX1 may serve as a potential therapeutic or drug development target for diabetic atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/genética , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Ferroptose , Heme Oxigenase-1/genética , Regulação para Cima , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Aterosclerose/patologia , Cicloexilaminas/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Progressão da Doença , Comportamento Alimentar , Feminino , Ferroptose/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutationa/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sobrecarga de Ferro/complicações , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Knockout , NADP/metabolismo , Fenilenodiaminas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
3.
Cell Metab ; 33(10): 2059-2075.e10, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536344

RESUMO

Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.

4.
Cell Death Dis ; 12(6): 508, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006831

RESUMO

There is limited and discordant evidence on the role of nicotine in diabetic vascular disease. Exacerbated endothelial cell dysregulation in smokers with diabetes is associated with the disrupted adipose function. Adipokines possess vascular protective, anti-inflammatory, and anti-diabetic properties. However, whether and how nicotine primes and aggravates diabetic vascular disorders remain uncertain. In this study, we evaluated the alteration of adiponectin (APN) level in high-fat diet (HFD) mice with nicotine (NIC) administration. The vascular pathophysiological response was evaluated with vascular ring assay. Confocal and co-immunoprecipitation analysis were applied to identify the signal interaction and transduction. These results indicated that the circulating APN level in nicotine-administrated diabetic Apolipoprotein E-deficient (ApoE-/-) mice was elevated in advance of 2 weeks of diabetic ApoE-/- mice. NIC and NIC addition in HFD groups (NIC + HFD) reduced the vascular relaxation and signaling response to APN at 6 weeks. Mechanistically, APN receptor 1 (AdipoR1) level was decreased in NIC and further significantly reduced in NIC + HFD group at 6 weeks, while elevated suppressor of cytokine signaling 3 (SOCS3) expression was induced by NIC and further augmented in NIC + HFD group. Additionally, nicotine provoked SOCS3, degraded AdipoR1, and attenuated APN-activated ERK1/2 in the presence of high glucose and high lipid (HG/HL) in human umbilical vein endothelial cells (HUVECs). MG132 (proteasome inhibitor) administration manifested that AdipoR1 was ubiquitinated, while inhibited SOCS3 rescued the reduced AdipoR1. In summary, this study demonstrated for the first time that nicotine primed vascular APN resistance via SOCS3-mediated degradation of ubiquitinated AdipoR1, accelerating diabetic endothelial dysfunction. This discovery provides a potential therapeutic target for preventing nicotine-accelerated diabetic vascular dysfunction.


Assuntos
Adiponectina/metabolismo , Apolipoproteínas E/metabolismo , Nicotina/efeitos adversos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Transfecção , Ubiquitina
5.
Proteomes ; 9(1)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804408

RESUMO

With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate.

6.
J Diabetes Res ; 2021: 5398645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791389

RESUMO

Objective: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses. Methods: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses. Results: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. Conclusion: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/genética , Retinopatia Diabética/genética , Animais , Autofagia/fisiologia , Biomarcadores , Retinopatia Diabética/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/análise , RNA Mensageiro/análise
7.
Biochem Biophys Res Commun ; 548: 182-188, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647794

RESUMO

Intermittent hypoxia (IH), a main characteristic of obstructive sleep apnea (OSA) syndrome, is an independent risk factor of cardiovascular complications. However, the mechanism has not been fully elucidated. Growing evidence has revealed alterations of extracellular vesicle (EV) contents, mostly miRNAs, playing a pathogenic role in cardiovascular complications. In current study, we attempt to compare the disparity of myocardial EV miRNA components after IH or normoxia treatment and determine whether EVs from IH-treated cardiomyocytes could affect endothelial function. 63 differentially expressed miRNAs were identified in EVs from IH-exposed cardiomyocytes by miRNA chip assay. Among them, 16 miRNAs with homologous sequence in mouse and human were verified by qPCR assay and 11 miRNAs were proved with the same tendency as miRNA chip assay. KEGG predicted that the function of differentially expressed miRNA was enriched to Akt signaling pathway. Notably, EVs from IH-exposed cardiomyocytes dramatically impaired endothelial-dependent relaxation and inhibited Akt/eNOS expression in endothelial cells. This study provides the first evidence that IH significantly alters myocardial EV miRNA composition and reveals a novel role of myocardial EVs in endothelial function under IH status, which will help to understand the OSA- or IH-related endothelial dysfunction from a new scope.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Hipóxia Celular/genética , Vesículas Extracelulares/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocárdio/metabolismo , Reprodutibilidade dos Testes
8.
Redox Biol ; 41: 101929, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714738

RESUMO

BACKGROUND: Mesenchymal stem cell therapy improves ischemic heart failure via incompletely understood mechanisms. C1q-TNFα related protein-9 (CTRP9) is a novel anti-oxidative cardiokine capable of improving the local microenvironment and cell survival by its c-terminal active globular domain (gCTRP9). The current study attempted to: 1) identify active gCTRP9 c-terminal polypeptides with stem cell protective function; 2) determine whether a lead polypeptide may enable/enhance cortical bone-derived mesenchymal stem cell (CBSC) cardioprotection against post-myocardial infarction (post-MI) remodeling; and 3) define the responsible underlying cellular/molecular mechanisms. METHODS AND RESULTS: Utilizing I-TASSER structure prediction and 3-D active site modeling, we cloned and purified 3 gCTRP9 fragments (CTRP9-237, CTRP9-277, and CTRP9-281). Their activation of cell salvage kinase was compared against gCTRP9. Among the three fragments, CTRP9-281 (a 45 residue-containing polypeptide) exerted comparable or greater ERK1/2 activation compared to gCTRP9. Treatment with CTRP9-281 or gCTRP9 significantly increased CBSC proliferation and migration, and attenuated oxidative stress-induced CBSC apoptosis. CTRP9-281 and gCTRP9 comparably upregulated SOD2 and SOD3 expression. However, CTRP9-281, not gCTRP9, upregulated FGF2 and VEGFA expression/secretion in an ERK1/2 dependent manner. Administration of gCTRP9 or CTRP9-281 alone attenuated post-MI cardiac dysfunction and improved CBSC retention in the infarcted heart in similar fashion. However, CTRP9-281 exerted greater synergistic effect with CBSC than gCTRP9 related to pro-angiogenic, anti-fibrotic, and anti-remodeling effects. Mechanistically, CTRP9-281 significantly increased SOD2-rich and VEGFA-rich exosome production by CBSC. Exosomes from CTRP9-281 treated CBSC significantly attenuated oxidative stress-induced cardiomyocyte apoptosis in vitro. An exosome generation inhibitor attenuated CTRP9-281 enhancement of CBSC cardioprotection in vivo. CONCLUSION: We identified a CTRP9 polypeptide that upregulates SOD2/SOD3 expression and improves CBSC survival/retention, similar to gCTRP9. Moreover, CTRP9-281 stimulates VEGFA-rich exosome production by CBSC, exerting superior pro-angiogenic, anti-fibrotic, and cardioprotective actions.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Adiponectina , Glicoproteínas , Proteína C , Fator de Necrose Tumoral alfa
9.
Med (N Y) ; 2(4): 435-447.e4, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33521746

RESUMO

Background: To develop a sensitive risk score predicting the risk of mortality in patients with coronavirus disease 2019 (COVID-19) using complete blood count (CBC). Methods: We performed a retrospective cohort study from a total of 13,138 inpatients with COVID-19 in Hubei, China, and Milan, Italy. Among them, 9,810 patients with ≥2 CBC records from Hubei were assigned to the training cohort. CBC parameters were analyzed as potential predictors for all-cause mortality and were selected by the generalized linear mixed model (GLMM). Findings: Five risk factors were derived to construct a composite score (PAWNN score) using the Cox regression model, including platelet counts, age, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio. The PAWNN score showed good accuracy for predicting mortality in 10-fold cross-validation (AUROCs 0.92-0.93) and subsets with different quartile intervals of follow-up and preexisting diseases. The performance of the score was further validated in 2,949 patients with only 1 CBC record from the Hubei cohort (AUROC 0.97) and 227 patients from the Italian cohort (AUROC 0.80). The latent Markov model (LMM) demonstrated that the PAWNN score has good prediction power for transition probabilities between different latent conditions. Conclusions: The PAWNN score is a simple and accurate risk assessment tool that can predict the mortality for COVID-19 patients during their entire hospitalization. This tool can assist clinicians in prioritizing medical treatment of COVID-19 patients. Funding: This work was supported by National Key R&D Program of China (2016YFF0101504, 2016YFF0101505, 2020YFC2004702, 2020YFC0845500), the Key R&D Program of Guangdong Province (2020B1111330003), and the medical flight plan of Wuhan University (TFJH2018006).

10.
Circulation ; 143(6): 581-582, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33555920
11.
Cell Metab ; 33(2): 258-269.e3, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421384

RESUMO

Corticosteroid therapy is now recommended as a treatment in patients with severe COVID-19. But one key question is how to objectively identify severely ill patients who may benefit from such therapy. Here, we assigned 12,862 COVID-19 cases from 21 hospitals in Hubei Province equally to a training and a validation cohort. We found that a neutrophil-to-lymphocyte ratio (NLR) > 6.11 at admission discriminated a higher risk for mortality. Importantly, however, corticosteroid treatment in such individuals was associated with a lower risk of 60-day all-cause mortality. Conversely, in individuals with an NLR ≤ 6.11 or with type 2 diabetes, corticosteroid treatment was not associated with reduced mortality, but rather increased risks of hyperglycemia and infections. These results show that in the studied cohort corticosteroid treatment is associated with beneficial outcomes in a subset of COVID-19 patients who are non-diabetic and with severe symptoms as defined by NLR.


Assuntos
Corticosteroides/uso terapêutico , COVID-19/tratamento farmacológico , Linfócitos/citologia , Neutrófilos/citologia , Corticosteroides/efeitos adversos , Área Sob a Curva , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Tempo de Internação , Modelos de Riscos Proporcionais , Curva ROC , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Taxa de Sobrevida , Resultado do Tratamento
12.
Clin Transl Med ; 10(8): e242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377640

RESUMO

In response to pathological stimuli, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. miRNAs are increasingly recognized as pathogenic factors, clinically relevant biomarkers, and potential therapeutic targets. We identified that mir15a/mir16-1 cluster was negatively correlated with hypertrophic severity in patients with hypertrophic cardiomyopathy. The mir15a/mir16-1 expression was enriched in cardiomyocytes (CMs), decreased in hypertrophic human hearts, and decreased in mouse hearts after transverse aortic constriction (TAC). CM-specific mir15a/mir16-1 knockout promoted cardiac hypertrophy and dysfunction after TAC. CCAAT/enhancer binding protein (C/EBP)ß was responsible for the downregulation of mir15a/mir16-1 cluster transcription. Mechanistically, mir15a/mir16-1 cluster attenuated the insulin/IGF1 signal transduction cascade by inhibiting multiple targets, including INSR, IGF-1R, AKT3, and serum/glucocorticoid regulated kinase 1 (SGK1). Pro-hypertrophic response induced by mir15a/mir16-1 inhibition was abolished by knockdown of insulin receptor (INSR), insulin like growth factor 1 receptor (IGF1R), AKT3, or SGK1. In vivo systemic delivery of mir15a/mir16-1 by nanoparticles inhibited the hypertrophic phenotype induced by TAC. Importantly, decreased serum mir15a/mir16-1 levels predicted the occurrence of left ventricular hypertrophy in a cohort of patients with hypertension. Therefore, mir15a/mir16-1 cluster is a promising therapeutic target and biomarker for cardiac hypertrophy.

13.
Clin Sci (Lond) ; 134(18): 2453-2467, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940654

RESUMO

Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Adiponectina/metabolismo , Sódio/metabolismo , Adiponectina/metabolismo , Animais , Pressão Sanguínea , Linhagem Celular , Diurese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Natriurese , Fosforilação , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Mediators Inflamm ; 2020: 7281391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831639

RESUMO

Background: Obstructive sleep apnea (OSA) is closely related to the incidence and progression of coronary artery disease (CAD), and the mechanisms linking OSA and CAD are multifactorial. C1q/TNF-related protein-9 (CTRP9) is a novel adipokine that protects the heart against ischemic injury and ameliorates cardiac remodeling. We aimed to ascertain the clinical relevance of CTRP9 with OSA prevalence in patients with CAD. Methods: From August 2016 to March 2019, consecutive eligible patients with CAD (n = 154; angina pectoris, n = 88; acute myocardial infarction [AMI], n = 66) underwent cardiorespiratory polygraphy. OSA was defined as an apnea-hypopnea index (AHI) ≥15 events·h-1. Plasma CTRP9 concentrations were measured by ELISA method. Results: Moderate/severe OSA was present in 89 patients (57.8%). CTRP9 levels were significantly decreased in the moderate/severe OSA group than in the no/mild OSA group (4.7 [4.1-5.2] ng/mL vs. 4.9 [4.4-6.0] ng/mL, P = 0.003). The difference between groups was only observed in patients with AMI (3.0 [2.3-4.9] vs. 4.5 [3.2-7.9], P = 0.009). Correlation analysis showed that CTRP9 levels were negatively correlated with AHI (r = -0.238, P = 0.003) and oxygen desaturation index (r = -0.234, P = 0.004) and positively correlated with left ventricular ejection fraction (r = 0.251, P = 0.004) in all subjects. Multivariate analysis showed that male gender (OR 3.099, 95% CI 1.029-9.330, P = 0.044), BMI (OR 1.148, 95% CI 1.040-1.268, P = 0.006), and CTRP9 levels (OR 0.726, 95% CI 0.592-0.890, P = 0.002) were independently associated with the prevalence of moderate/severe OSA. Conclusions: Plasma CTRP9 levels were independently related to the prevalence of moderate/severe OSA in patients with CAD, suggesting that CTRP9 might play a role in the pathogenesis of CAD exacerbated by OSA.


Assuntos
Adiponectina/metabolismo , Doença da Artéria Coronariana/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Adipocinas/metabolismo , Adiponectina/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo
16.
Cell Metab ; 32(4): 537-547.e3, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32861268

RESUMO

The safety and efficacy of anti-diabetic drugs are critical for maximizing the beneficial impacts of well-controlled blood glucose on the prognosis of individuals with COVID-19 and pre-existing type 2 diabetes (T2D). Metformin is the most commonly prescribed first-line medication for T2D, but its impact on the outcomes of individuals with COVID-19 and T2D remains to be clarified. Our current retrospective study in a cohort of 1,213 hospitalized individuals with COVID-19 and pre-existing T2D indicated that metformin use was significantly associated with a higher incidence of acidosis, particularly in cases with severe COVID-19, but not with 28-day COVID-19-related mortality. Furthermore, metformin use was significantly associated with reduced heart failure and inflammation. Our findings provide clinical evidence in support of continuing metformin treatment in individuals with COVID-19 and pre-existing T2D, but acidosis and kidney function should be carefully monitored in individuals with severe COVID-19.


Assuntos
Acidose/induzido quimicamente , Infecções por Coronavirus/complicações , Diabetes Mellitus Tipo 2/complicações , Metformina/efeitos adversos , Pneumonia Viral/complicações , Acidose Láctica/induzido quimicamente , Idoso , COVID-19 , China/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Hospitalização , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Estudos Retrospectivos
17.
Life Sci ; 257: 118084, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663572

RESUMO

Since an outbreak of vaping-related deaths in the US has been reported as a public health crisis, the cardiovascular safety of nicotine nowadays receives increasing attention due to use of tobacco cigarette alternatives, such as electronic cigarettes. However, whether and how nicotine contributes to cardiac detrimental effects are in great controversy, especially less understood in young adult population. We report that chronic nicotine exposure, a major component of Electronic cigarettes, resulted in directly inhibited cardiomyocytes viability, increased cardiac fibrosis, and markedly suppressed cardiac function compared with sham. Gene array combined with bioinformatics analysis identified cardiac apoptosis and mitophagy were the key signals responsible for nicotine induced cardiac detrimental effect. Mechanistically, nicotine exposure markedly increased cleaved Caspase 3 and cleaved Caspase 9 indicating the involvement of intrinsic apoptotic pathway (mitochondrial cell death pathway). Meanwhile, nicotine-induced ROS outbreak promoted lysomal alkalization, furthermore blocked mitophagic degradation, thereby disrupted mitophagic flux promoted mitochondrial cell death cascade. Taken together, these findings indicate that nicotine confers cardiotoxicity via ROS-induced mitophagic flux blockage and provide the first demonstration of a causative link between nicotine and cardiac toxicity in young adult rat which may suggest nicotine induces cardiomyocytes impairment leading to cardiotoxicity in young adult population.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nicotina/toxicidade , Animais , Cardiotoxicidade/fisiopatologia , Sistemas Eletrônicos de Liberação de Nicotina , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vaping/efeitos adversos
18.
Hypertension ; 76(4): 1104-1112, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673499

RESUMO

The prognostic power of circulating cardiac biomarkers, their utility, and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multicentered retrospective study, we enrolled 3219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effects Cox model, after adjusting for age, sex, and comorbidities, the adjusted hazard ratio of 28-day mortality for hs-cTnI (high-sensitivity cardiac troponin I) was 7.12 ([95% CI, 4.60-11.03] P<0.001), (NT-pro)BNP (N-terminal pro-B-type natriuretic peptide or brain natriuretic peptide) was 5.11 ([95% CI, 3.50-7.47] P<0.001), CK (creatine phosphokinase)-MB was 4.86 ([95% CI, 3.33-7.09] P<0.001), MYO (myoglobin) was 4.50 ([95% CI, 3.18-6.36] P<0.001), and CK was 3.56 ([95% CI, 2.53-5.02] P<0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 19%-50% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoff values of these biomarkers might be much lower than the current reference standards. These findings can assist in better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19-associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials.


Assuntos
Infecções por Coronavirus , Creatina Quinase Forma MB/sangue , Cardiopatias , Peptídeo Natriurético Encefálico/sangue , Pandemias , Fragmentos de Peptídeos/sangue , Pneumonia Viral , Troponina I/sangue , Betacoronavirus/isolamento & purificação , Biomarcadores/sangue , COVID-19 , China/epidemiologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/terapia , Feminino , Cardiopatias/sangue , Cardiopatias/mortalidade , Cardiopatias/virologia , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Avaliação de Resultados em Cuidados de Saúde , Pneumonia Viral/sangue , Pneumonia Viral/mortalidade , Pneumonia Viral/terapia , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...