Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330603

RESUMO

The development of next-generation sequencing technology and the discovery of specific antibodies targeting chemically modified nucleotides have paved the way for a new era of epitranscriptomics. Cellular RNA is known to dynamically and reversibly undergo different chemical modifications after transcription, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), and 5-hydroxymethylcytidine (hm5C), whose identity and location comprise the field of epitranscriptomics. Dynamic post-transcriptional modifications determine the fate of target RNAs by regulating various aspects of their processing, including RNA export, transcript processing, splicing, and degradation. The most abundant internal mRNA modification in eukaryotic cells is m6A, which exhibits essential roles in physiological processes, such as embryogenesis, carcinogenesis, and neurogenesis. m6A is deposited by the m6A methyltransferase complex (composed of METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognized by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3). Liver is the largest digestive and metabolic organ, and m6A modifications play unique roles in critical physiological hepatic functions and various liver diseases. This review focuses on the biological roles of m6A RNA methylation in lipid metabolism, viral hepatitis, nonalcoholic fatty liver disease, liver cancer, and tumor metastasis. In addition, we summarize the existing inhibitors targeting m6A regulators and discuss the potential of modulating m6A modifications as a therapeutic strategy.

2.
Plant Cell Rep ; 39(6): 765-777, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215683

RESUMO

KEY MESSAGE: The DNA fragments transferred among cotton cytoplasmic genomes are highly differentiated. The wild D group cotton species have undergone much greater evolution compared with cultivated AD group. Cotton (Gossypium spp.) is one of the most economically important fiber crops worldwide. Gene transfer, nucleotide evolution, and the codon usage preferences in cytoplasmic genomes are important evolutionary characteristics of high plants. In this study, we analyzed the nucleotide sequence evolution, codon usage, and transfer of cytoplasmic DNA fragments in Gossypium chloroplast (cp) and mitochondrial (mt) genomes, including the A genome group, wild D group, and cultivated AD group of cotton species. Our analyses indicated that the differences in the length of transferred cytoplasmic DNA fragments were not significant in mitochondrial and chloroplast sequences. Analysis of the transfer of tRNAs found that trnQ and nine other tRNA genes were commonly transferred between two different cytoplasmic genomes. The Codon Adaptation Index values showed that Gossypium cp genomes prefer A/T-ending codons. Codon preference selection was higher in the D group than the other two groups. Nucleotide sequence evolution analysis showed that intergenic spacer sequences were more variable than coding regions and nonsynonymous mutations were clearly more common in cp genomes than mt genomes. Evolutionary analysis showed that the substitution rate was much higher in cp genomes than mt genomes. Interestingly, the D group cotton species have undergone much faster evolution compared with cultivated AD groups, possibly due to the selection and domestication of diverse cotton species. Our results demonstrate that gene transfer and differential nucleotide sequence evolution have occurred frequently in cotton cytoplasmic genomes.

3.
Langmuir ; 36(6): 1409-1417, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32037836

RESUMO

A series of mononuclear lanthanide complexes [Ln(L1)(NO3)3], (Ln = Dy(III), 1; Tb(III), 3; and Eu(III), 4; L1 = (N1E,N2E)-N1,N2-bis((1-methyl-1H-benzo[d]imidazol-2-yl)methylene)cyclohexane-1,2-diamine) is obtained by reacting N-methylbenzimidazole-2-carbaldehyde (L2) and 1,2-cyclohexanediamine (L3) with Ln(NO3)3·6H2O under solvothermal conditions. L1 ligand is produced via an in situ Schiff base reaction of two molecules of L2 and one molecule of L3. The metal center Ln(III) is in a N4O6 environment formed by L1 and NO3-. NaSCN is added on the basis of 1 synthesis. One SCN- replaces one of the three coordinated NO3- anions in the 1 structure, and the complex [Dy(L1)(NO3)2(SCN)]·CH3CN (2) is synthesized. The complex 1 shows excellent luminescence response to petroleum ether (PET), an organic solvent. To the best of our knowledge, this study is the first to use a complex for sensing responses to PET. When the metal center is changed, the obtained mononuclear complexes 3 and 4 show an excellent luminescence response to tetrahydrofuran (THF). Lastly, 2 obtained by changing the coordinating anion shows an excellent luminescence response to dichloromethane. Herein, for the first time, we regulate the metal center and coordinating anion of lanthanide complexes to adjust the recognition and response of these complexes to different organic solvents.

4.
Sci Rep ; 10(1): 3201, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081971

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by increased uptake and accumulation of lipids in hepatocytes. Simple steatosis may progress to non-alcoholic steatohepatitis (NASH) with inflammation, hepatocellular injury and fibrosis. CCN1 is an important matrix protein that regulates cell death and promotes immune cell adhesion and may potentially control this process. The role of CCN1 in NASH remains unclear. We investigated the role of CCN1 in the pathogenesis of steatohepatitis. CCN1 upregulation was found to be closely related with steatosis in patients with NASH, obese mice and a FFA-treated hepatocyte model. Controlling the expression of CCN1 in murine NASH models demonstrated that CCN1 increased the severity of steatosis and inflammation. From the sequence results, we found that fatty acid metabolism genes were primarily involved in the MCD mice overexpressing CCN1 compared to the control. Then, the expression of fatty acid metabolism genes was determined using a custom-designed pathway-focused qPCR-based gene expression array. Expression analysis showed that CCN1 overexpression significantly upregulated the expression of fatty acid metabolism-associated genes. In vitro analysis revealed that CCN1 increased the intracellular TG content, the pro-inflammatory cytokines and the expression level of apoptosis-associated proteins in a steatosis model using murine primary hepatocytes. We identified CCN1 as an important positive regulator in NASH.

5.
Cell Death Dis ; 11(1): 17, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907348

RESUMO

Endoplasmic reticulum (ER) stress-associated cell death is prevalent in various liver diseases. However, the determinant mechanism how hepatocytes survive unresolved stress was still unclear. Interleukin-24 (IL-24) was previously found to promote ER stress-mediated cell death, and yet its expression and function in the liver remained elusive. Here we identified an antiapoptotic role of IL-24, which transiently accumulated within ER-stressed hepatocytes in a X-box binding protein 1 (XBP1)-dependent manner. Disruption of IL-24 increased cell death in the CCL4- or APAP-challenged mouse liver or Tm-treated hepatocytes. In contrast, pharmaceutical blockade of eukaryotic initiation factor 2α (eIF2α) or genetical ablation of C/EBP homologous protein (CHOP) restored hepatocyte function in the absence of IL-24. In a clinical setting, patients with acute liver failure manifested a profound decrease of hepatic IL-24 expression, which was associated with disease progression. In conclusion, intrinsic hepatocyte IL-24 maintains ER homeostasis by restricting the eIF2α-CHOP pathway-mediated stress signal, which might be exploited as a bio-index for prognosis or therapeutic intervention in patients with liver injury.

6.
Clin Rev Allergy Immunol ; 58(1): 25-38, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30900136

RESUMO

Accumulation of bile acids (BAs) contributes significantly to the pathogenesis of primary biliary cholangitis (PBC). Here, we sought to systematically characterize the serum and fecal BA profiles and the linkage between BAs and gut microbiota in PBC. The serum and fecal BAs were compared between 65 UDCA treatment-naive PBC and 109 healthy controls using UPLC-MS in cross-sectional study. In a prospective study, a subgroup of patients was enrolled for BA and microbiota analysis before and after UDCA therapy. BA compositions in serum and feces significantly differed between treatment-naive PBC and controls. Particularly, PBC was associated with decreased conversions of conjugated to unconjugated, and primary to secondary BAs, indicating impaired microbial metabolism of BAs. PBC patients at advanced stage exhibited a more abnormal BA profile compared with early-stage patients. UDCA treatment led to a decreased level of taurine-conjugated BAs, thereby reversing the conjugated/unconjugated ratio in PBC. Moreover, the level of secondary BAs such as DCA and conjugated DCA inversely correlated with PBC-enriched gut microbes (e.g., Veillonella, Klebsiella), while positively correlated with control-enriched microbes (e.g., Faecalibacterium, Oscillospira). Microbiota analysis also revealed a significant increase of taurine-metabolizing bacteria Bilophila spp. in patients after UDCA, which was strongly correlated with decreased taurine-conjugated BAs. In addition, serum FGF19 was remarkably increased in treatment-naïve PBC and decreased after UDCA. Our study established specific alterations of BA compositions in serum and feces of PBC, suggesting the potential for using BAs for diagnosis, and highlighting the possibility of modulating BA profile by altering gut microbiota. Graphical Abstract.

7.
Gut ; 69(3): 569-577, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31201284

RESUMO

OBJECTIVE: The significance of the liver-microbiome axis has been increasingly recognised as a major modulator of autoimmunity. The aim of this study was to take advantage of a large well-defined corticosteroids treatment-naïve group of patients with autoimmune hepatitis (AIH) to rigorously characterise gut dysbiosis compared with healthy controls. DESIGN: We performed a cross-sectional study of individuals with AIH (n=91) and matched healthy controls (n=98) by 16S rRNA gene sequencing. An independent cohort of 28 patients and 34 controls was analysed to validate the results. All the patients were collected before corticosteroids therapy. RESULTS: The gut microbiome of steroid treatment-naïve AIH was characterised with lower alpha-diversity (Shannon and observed operational taxonomic units, both p<0.01) and distinct overall microbial composition compared with healthy controls (p=0.002). Depletion of obligate anaerobes and expansion of potential pathobionts including Veillonella were associated with disease status. Of note, Veillonella dispar, the most strongly disease-associated taxa (p=8.85E-8), positively correlated with serum level of aspartate aminotransferase and liver inflammation. Furthermore, the combination of four patients with AIH-associated genera distinguished AIH from controls with an area under curves of approximately 0.8 in both exploration and validation cohorts. In addition, multiple predicted functional modules were altered in the AIH gut microbiome, including lipopolysaccharide biosynthesis as well as metabolism of amino acids that can be processed by bacteria to produce immunomodulatory metabolites. CONCLUSION: Our study establishes compositional and functional alterations of gut microbiome in AIH and suggests the potential for using gut microbiota as non-invasive biomarkers to assess disease activity.

8.
J Autoimmun ; : 102372, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810856

RESUMO

The genetic association of primary biliary cholangitis with major histocompatibility complex (MHC) has been widely confirmed among different ethnicities. To map specific MHC region variants associated with PBC in a Han Chinese cohort, we imputed HLA antigens and amino acids (AA) in 1126 PBC cases and 1770 healthy control subjects using a Han-MHC reference database. We demonstrate that HLA-DRB1 and/or HLA-DQB1 contributed the strongest signals, and that HLA-DPB1 was a separate independent locus. Regression analyses with classical HLA alleles indicate that HLA-DQB1*03:01 or HLA-DQß1-Pro55, HLA-DPB1*17:01 or HLA-DPß1-Asp84 and HLA-DRB1*08:03 could largely explain MHC association with PBC. Forward stepwise regression analyses with HLA amino acid variants localize the major signals to HLA-DRß1-Ala74, HLA-DQß1-Pro55 and HLA-DPß1-Asp84. Electrostatic potential calculations implicated AA variations at HLA-DQß1 position 55 and HLA-DPß1 position 84 as critical to peptide binding properties. Furthermore, although several critical Han Chinese AA variants differed from those shown in European populations, the predicted effects on antigen binding are likely to be very similar or identical and underlie the major component of MHC association with PBC.

9.
Front Immunol ; 10: 2577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787974

RESUMO

Interleukin-35 (IL-35) is a novel anti-inflammatory cytokine of IL12 cytokine family, however, the role of IL-35 in patients with AIH and its effect on myeloid-derived suppressor cells (MDSCs) has not yet been analyzed. The expression of IL-35 subunits (p35 and EBI3) in liver tissues was quantified by immunochemistry and its correlation with clinical parameters was explored in patients with AIH. The expression of MDSCs and IL-35 receptor (gp130 and IL-12Rß2) were analyzed using flow cytometry and confocal staining. Besides, we utilized in vitro culture to explore the role of IL-35 on MDSCs expansion and activation. We found that the elevated expression of both IL-35 subunits (EBI3 and p35) in liver tissue was positively associated with degrees of hepatic inflammatory and fibrosis in patients with AIH. Furthermore, the expression of EBI3 in liver was positively correlated with patient age, serum IgG levels and serum AST, and was negatively correlated with hemoglobin and albumin. Moreover, our results showed that ratio of MDSC in peripheral blood increased significantly in AIH patients as compared with healthy controls. Further study showed that CD33, a representative marker of MDSCs, co-localized well with gp130 and IL12Rß2, suggesting MDSCs as target cell for IL-35. Consistently, MDSCs from AIH displayed a substantial higher abundance of gp130 and IL12Rß2 and were expanded by IL-35 in vitro. IL-35-induced MDSCs showed a significant increase in Nitric oxide (NO) production but not reactive oxygen species (ROS). Conclusions: IL-35 might play an important role in AIH by regulating MDSCs and it could provide new insights into the therapy of AIH.

10.
Hepatology ; 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863485

RESUMO

We read with interest the recent communication (1) reporting the efficacy and safety of 3-year treatment with denosumab for osteoporosis in patients with primary biliary cholangitis (PBC). PBC is a chronic cholestatic liver disease characterized by progressive destruction of intrahepatic bile ducts, portal tract inflammation, and fibrosis that may eventually progress to end-stage liver disease (2). Even though the exact etiology of PBC remains unknown, it is extensively accepted that the development of PBC requires one or more environmental factors that initiate an autoimmune response in genetically predisposed individuals.

12.
Dalton Trans ; 48(44): 16641-16649, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660548

RESUMO

The most effective way to understand reaction mechanisms and kinetics is to identify the reaction intermediates and determine the possible reaction patterns. The influencing factors that must be considered in the self-assembly of clusters are the type of ligand, metal ion, coordination anion and the pH of the solution. However, changes in ligand substituents resulting in different self-assembly processes to obtain different types of structures are still very rare, especially with -H and -CH3 substituents, which do not exert significant steric hindrance effects. In this study, planar mononuclear Ni(L1)2 (L1 = 2-ethoxy-6-(iminomethyl)phenol) was dissolved in methanol and combined with Dy(NO3)3·6H2O for 48 h at room temperature to obtain a butterfly-like Ni2Dy2 cluster ([Dy2Ni2(L1)4(CH3O)2(NO3)4], 1). The Dy(iii) ions in cluster 1 are in an O8N coordination environment, and the Ni(ii) ions are in an O5N coordination environment. High-resolution electrospray ionization mass spectrometry (HRESI-MS) was used to track species changes during the formation of cluster 1. Six key intermediate fragments were screened, and the self-assembly mechanism was proposed as Ni(L1)2→ HL1 + NiL1→ DyL1/Ni(L1)2'→ DyNi(L1)2→ Dy2Ni2(L1)4. Through this assembly mechanism, we found that Ni(L1)2 was first cleaved into HL1 + NiL1 and then further assembled to obtain 1. Another butterfly-like tetranuclear heterometallic cluster ([Dy2Ni2(L2)4(CH3O)2(NO3)4], 2) was obtained using planar mononuclear Ni(L2)2 (L2 = (E)-2-ethoxy-6-((methylimino)methyl)phenol) with -CH3 substitution on the nitrogen atom under the same reaction conditions. The structural analysis of cluster 2 showed that the Dy(iii) ions are in an O9 coordination environment, and the Ni(ii) ions are in an O4N2 coordination environment. HRESI-MS was used to trace species changes during the formation of 2, and the assembly mechanism was proposed as Ni(L2)2→ DyNi(L2)2→ Dy2Ni(L2)2→ Dy2Ni2(L2)4. Analysis of the assembly mechanism of 2 showed that Ni(L2)2 was twisted during the reaction, and its coordination point was exposed to capture the Dy(iii) ions. Finally, Dy(NO3)3·6H2O was replaced with NaN3 to obtain a [Ni2Na2(L2)4(N3)4] cluster (3) under the same reaction conditions and verify the above-mentioned torsion step. HRESI-MS was also used to trace the assembly process, and the assembly mechanism was proposed as Ni(L2)2→ NiNa(L2)2→ NiNa2(L2)2→ Ni2Na2(L2)4. Herein, the effect of interference from substitution and the regulation self-assembly process were discovered in the formation of 3d-4f heterometallic clusters, and different types of coordination clusters were obtained.

13.
J Autoimmun ; 105: 102328, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31548157

RESUMO

Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.

14.
Sci Rep ; 9(1): 12231, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439933

RESUMO

Four complexes, namely, [Ln2(L2)2(NO3)4]. 2CH3OH (Ln = Tb (1), Dy (2), Ho (3), Er (4), and L2 = (E)-2-methoxy-6-(((pyridin-2-ylmethyl)imino)methyl)phenol), were obtained by reacting (E)-2-((3-methoxy-2-oxidobenzylidene)amino)ethanesulfonate (L1), Ln(NO3)3·6H2O, and 2-aminomethylpyridine at room temperature under solvothermal conditions in methanol for 12 h. The new Schiff base L2 was generated in situ based on the organic ligand L1 and 2-aminomethylpyridine through Schiff base exchange reaction by using lanthanide salts as inductor. A combination of crystallography and mass spectrometry was performed to track the exchange reaction, and the underlying mechanism accompanied by the complex assembly process was clearly presented. The multistep formation mechanism of the above dinuclear complex was also proposed, i.e., [L1] → Dy[L1]/[L2] → Dy[L2] → Dy[L2]2 → Dy2[L2]2. Luminescence test of 1 showed that it had extremely high selectivity to dichloromethane (CH2Cl2). Therefore, we established a quick, simple, and efficient method of detecting CH2Cl2 that enabled strong-luminescence observation with the naked eye. Tests for small amounts of CH2Cl2 in water further indicated the potential of 1 as a test strip for CH2Cl2 fluorescence detection in water samples. Alternating-current magnetic susceptibility studies indicated the field-induced single-molecule magnet behavior of 2.

15.
Dalton Trans ; 48(30): 11338-11344, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31276138

RESUMO

The formation of high-nuclearity clusters of lanthanide usually involves many complicated self-assembly processes. Thus, tracking the formation process is extremely difficult and research on the assembly mechanism is very rare. In this study, a Dy-exclusive nanocluster containing vertex-sharing [Dy4(µ3-OH)4] cubanes, denoted as [Dy12(L)8(OH)16(CH3O)8(H2O)8]·(CH3O)4 (Dy12, L = quinoline-2-carboxylate), was designed and synthesized from L and DyCl3·6H2O. Eight quinoline-2-carboxylate ligands were encapsulated on the periphery of the Dy12 cluster, which served to stabilize the core. The high stability of the Dy12 cluster core was further confirmed by high-resolution electrospray-ionization mass spectrometry (HRESI-MS). With increased ion-source energy, only CH3O- and OH- bridging ligands were replaced inside the Dy12 cluster. Notably, eight intermediate fragments were successfully observed from the Dy12 cluster formation by time-dependent HRESI-MS. First, ligand L captured Dy3+ to give Dy1, which further formed Dy2 through µ2-O bridging. The Dy12 cluster was constructed in one step with four Dy2 and four Dy3+ as templates: L → Dy1→ Dy2→ Dy12. Moreover, a series of Dy3-Dy6 fragment peaks with relatively weak intensities were observed, and an alternative stepwise-assembly route was proposed: L → Dy1→ Dy2→ Dy3→ Dy4→ Dy5→ Dy6→ Dy12. On comparing the two different assembly methods, the multitemplate guided assembly formed Dy12 was found to be dominant. To the best of our knowledge, this study was the first to propose the involvement of two self-assembly mechanisms in the construction of lanthanide clusters, as further confirmed by HRESI-MS. Magnetic studies further showed that Dy12 clusters exhibited field-induced single-molecule magnet behavior.

16.
Chemistry ; 25(46): 10813-10817, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287598

RESUMO

Metal nanoclusters have a certain rigidity due to their specific coordination patterns and shapes; thus, they face extreme difficulty in folding into a specific direction to form a double-helix structure and in further interconnecting to form metal-helix frameworks (MHFs). To date, no MHFs have been produced by the formation of heterometallic clusters. Selecting the appropriate "bonding molecules" to bond metal nanoclusters in a specific multiple direction is one of the most effective strategies for designing synthetic MHFs. In this study, we realized for the first time the control of different orientations of µ3 -NO3 - to join heterometallic clusters (Cu10 Dy2 ) and subsequently form a left-handed double helix chain, which further joins to form MHFs. In the structure of the MHFs, four different directions of bridging µ3 -NO3 - exist, three of which are involved in the linkage of the double-helix chain. Each µ3 -NO3 - is connected to three adjacent Cu10 Dy2 . Herein, we extend a new method for designing synthetic double-helix structures and MHFs, thereby further laying the foundation for the development of similar DNA double-helix structures and nucleic acid secondary structures in vitro.

17.
J Autoimmun ; 103: 102293, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31255417

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with an immunopathogenesis that includes highly differentiated cytotoxic T cell infiltration in portal areas. We have taken advantage of a large and well-defined cohort of patients with PBC, AIH, chronic hepatitis virus, and healthy controls to study for the presence of highly differentiated T cells which express the killer cell lectin-like receptor G1 (KLRG1). Such studies were performed using both liver and peripheral blood mononuclear cells. In particular, gene expression data (GSE79850) from 16 PBC patients stratified according to future risk of liver transplantation were analyzed for markers of highly differentiated cytotoxic T cells. Liver biopsy samples from 44 PBC patients were studied by immunohistochemistry and a separate cohort of PBC blood samples were studied by flow cytometry. Gene expression data demonstrated correlation of increased KLRG1 and cytotoxic lymphocyte molecules, such as granzyme B (GZMB) and perforin (PRF1), to disease severity as measured by future risk of liver transplantation. Immunohistochemistry demonstrated abundant infiltration of KLRG1+ cells into liver portal areas (mean of 45% of infiltrating cells, range 25-75%) positively correlated with hepatic inflammatory (r = 0.47, p = 0.001) and hepatic fibrosis (r = 0.34, p = 0.021) scores. KLRG1+ lymphocyte liver portal area infiltration was positively correlated with serum alkaline phosphatase (r = 0.45, p = 0.005) and GGT (r = 0.40, p = 0.014), and AST (r = 0.35, p = 0.033) levels. Mononuclear blood flow cytometry studies showed KLRG1+ lymphocytes had greater levels of cytotoxic molecules (granzyme B and perforin), inflammatory cytokines (IFN-γ and TNF-α) and inflammatory chemokine receptors (CCR5 and CX3CR1) than KLRG1-counterparts. However, clearly the most significant data was that found in liver with the intense portal infiltrates that are unique to PBC. Conclusion: Highly cytotoxic KLRG1+ lymphocytes have invaded PBC liver portal areas. Liver KLRG1 gene expression and the abundance of KLRG1+ lymphocytes are positively correlated with disease biomarkers used as clinical trial outcome measures (liver transplantation and serum alkaline phosphatase), suggesting the targeting of KLRG1+ lymphocytes as a rational approach for PBC therapeutic drug development.

18.
Inorg Chem ; 58(14): 9169-9174, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241324

RESUMO

High-nuclear lanthanide clusters are generally formed by the rapid accumulation of simple building units. Thus, tracking and observing the stepwise assembly process, which is vital for understanding the assembly mechanism, are extremely difficult. Herein, the decanuclear nanocluster [Dy10(L1)6(µ5-NO3)2(OAc)10(HOAc)2]·8H2O (Dy10, H3L1 = (E)-3-((3-ethoxy-2-hydroxybenzylidene)amino)propane-1,2-diol) was obtained from the reaction of Dy(NO3)3·6H2O, Dy(OAc)3·6H2O, 3-ethoxy-2-hydroxybenzaldehyde (L2), and 3-amino-1,2-propanediol (L3). The reaction process was further tracked by time-dependent high-resolution electrospray ionization mass spectrometry, and seven reaction intermediate fragments were screened. A stepwise assembly mechanism was observed based on these fragments, that is, L → Dy1 → Dy2 → Dy3 → Dy4 → Dy5 → Dy6 → Dy10. This study is the first to discover a stepwise assembly mechanism during the formation of high-nuclear lanthanide clusters (cluster nucleus > 3). Magnetic studies have shown the multiple relaxation behavior of Dy10.

19.
J Dig Dis ; 20(7): 363-370, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111679

RESUMO

OBJECTIVE: Interleukin 12 receptor beta 1 (IL-12Rß1) deficiency is a primary immunodeficiency that exposes affected individuals to an augmented risk of intracellular pathogen-mediated infections. The paradoxical presence of autoimmune manifestations in immune-deficient patients has been recognized, but the basis of this phenomenon is unclear, with the role of frequent infections being a possible trigger to break tolerance. Our study aimed to analyze extensively a profile of autoantibodies in a clinically well-defined case series of patients with IL-12Rß1 deficiency. METHODS: Eight patients with IL-12Rß1 deficiency referred to Children's Medical Center in Tunis, Tunisia, during 1995-2012 were enrolled in the study. Sixteen age- and gender-matched blood donors served as controls. Serum, liver-related autoantibodies immunoglobulin (Ig)G, IgM, IgA were tested by ELISA and by standard indirect immunofluorescence on Hep-2 cells. RESULTS: We found a significant prevalence of liver autoantibodies in the study group. Regarding primary biliary cholangitis (PBC), two of eight patients were positive for MIT3 autoantibodies, both confirmed by immunofluorescence, and one patient was positive for PBC-specific antinuclear antibodies, sp100. Moreover, two patients had significantly increased gamma-glutamyltransferase levels and one had IgM levels twice the upper limit of normal. Intriguingly two patients were positive for anti-actin antibodies; a typical feature of autoimmune hepatitis type 1, along with a significant increase in IgG levels. CONCLUSIONS: This is the first report of a serological analysis in patients with an IL-12Rß1 deficiency. Despite the difficulty in interpreting the role of the IL-12, the evidence of liver-specific autoantibodies confirms the importance its signal in liver autoimmunity.

20.
J Dig Dis ; 20(7): 371-376, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102333

RESUMO

OBJECTIVES: Collagen triple helix repeat containing-1 (CTHRC1) is a highly conserved extracellular matrix glycoprotein that is overexpressed in two murine models of cholestatic liver fibrosis. Elevated CTHRC1 has been found to attenuate liver fibrosis in these murine models, thus we aimed to study the expression of CTHRC1 in patients with cholestatic liver diseases and its correlation with hepatic conditions. METHODS: Ninety patients with chronic liver disease, including 48 had primary biliary cholangitis (PBC), 18 had primary sclerosing cholangitis (PSC) and 24 had chronic hepatitis B (CHB), together with five healthy controls (HC), were recruited to this study. Participants' liver sections were analyzed using immunohistochemistry. Serum CTHRC1 levels in another cohort of 59 patients with PBC and 10 age-matched HC were detected by enzyme-linked immunosorbent assay. RESULTS: CTHRC1 protein was primarily expressed in activated hepatic stellate cells (HSC). CTHRC1 expression was significantly increased in the PBC and PSC groups, compared with the HC and CHB groups. Importantly, the hepatic fibrosis stage of the PBC group was positively correlated with hepatic CTHRC1 expression (r = 0.425, P = 0.003). Meanwhile, there were significant correlations between serum CTHRC1 levels and both the degrees of hepatic inflammation and fibrosis stage in the PBC group (r = 0.300, P = 0.022; r = 0.321, P = 0.012). CONCLUSION: CTHRC1 may play a role in hepatic fibrogenesis in PBC and that serum CTHRC1 may be a potential novel noninvasive biomarker in the assessment of liver fibrosis and inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA