Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
3.
FEBS Lett ; 593(13): 1616-1626, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209876

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy and is mainly caused by mutations of genes encoding cardiac sarcomeric proteins. HCM is characterized by hypertrophy of the left ventricle, frequently involving the septum, that is not explained solely by loading conditions. HCM has a heterogeneous clinical profile, but diastolic dysfunction and ventricular arrhythmias represent two dominant features of the disease. Preclinical evidence indicates that the enhanced Calcium (Ca2+ ) sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric mutations, but can also result from secondary mutation-driven alterations. Here, we review experimental and clinical evidence indicating that increased myofilament Ca2+ sensitivity lies upstream of numerous cellular derangements which potentially contribute to the progression of HCM toward heart failure and sudden cardiac death.

4.
Eur Heart J ; 40(26): 2155-2163, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957868

RESUMO

Randomized clinical trials initially used heart failure (HF) patients with low left ventricular ejection fraction (LVEF) to select study populations with high risk to enhance statistical power. However, this use of LVEF in clinical trials has led to oversimplification of the scientific view of a complex syndrome. Descriptive terms such as 'HFrEF' (HF with reduced LVEF), 'HFpEF' (HF with preserved LVEF), and more recently 'HFmrEF' (HF with mid-range LVEF), assigned on arbitrary LVEF cut-off points, have gradually arisen as separate diseases, implying distinct pathophysiologies. In this article, based on pathophysiological reasoning, we challenge the paradigm of classifying HF according to LVEF. Instead, we propose that HF is a heterogeneous syndrome in which disease progression is associated with a dynamic evolution of functional and structural changes leading to unique disease trajectories creating a spectrum of phenotypes with overlapping and distinct characteristics. Moreover, we argue that by recognizing the spectral nature of the disease a novel stratification will arise from new technologies and scientific insights that will shape the design of future trials based on deeper understanding beyond the LVEF construct alone.

5.
Eur J Heart Fail ; 21(3): 272-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30714667

RESUMO

Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins - resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti-fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research.

6.
J Physiol ; 2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30770570

RESUMO

KEY POINTS: Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during ß-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during ß-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT: Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to ß-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.

10.
Circulation ; 138(7): 735-742, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30359132

RESUMO

Recent epidemiological analyses suggest that incident cancer may be more common among patients with preexisting heart failure (HF) than in patients without HF. Arguments against this notion have been the increased chance of co-occurrence of 2 high-prevalence conditions and increased tumor detection in patients with HF because of intensified medical observation. However, biological data lend support to the hypothesis that HF is an oncogenic condition. Neurohormonal activation has been related to cancer initiation, progression, and dissemination by studies not specifically focusing on HF, which are now reappraised in the light of the emerging evidence that tumors are diagnosed more often in HF than control cohorts. Furthermore, a thought-provoking scenario to be considered is that a systemically perturbed milieu, where low-grade inflammation plays a primary role, leads to both HF and malignancy, thus connecting 1 disease to another. Postischemic HF has been shown to promote tumor growth in an animal model. Exploring these and other pathways potentially linking HF to malignancy is a new and exciting field of research, with the ultimate goal of answering the question of whether HF does promote cancer.

12.
Eur Heart J ; 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30295807

RESUMO

Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.

15.
Nat Rev Cardiol ; 15(12): 780-781, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30367135
16.
Basic Res Cardiol ; 113(6): 42, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30191336

RESUMO

Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP-/- mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl4 (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Iα2 mRNA, Ki67+ fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)+ fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP-/- mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP-/- mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Iα2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.

17.
Diabetes Obes Metab ; 20(12): 2911-2918, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30033664

RESUMO

Myocardial infarction causes rapid impairment of left ventricular function and requires a hypercontractile response of non-infarcted tissue areas to maintain haemodynamic stability. This compensatory adaptation is mediated by humoral, inflammatory and neuronal signals. GLP-1 is an incretin hormone with glucoregulatory and cardioprotective capacities and is secreted in response to nutritional and inflammatory stimuli. Inactivation of GLP-1 is caused by the ubiquitously present enzyme DPP-4. In this study, circulating concentrations of GLP-1 were assessed after myocardial infarction and were evaluated in the light of metabolism, left ventricular contractility and mitochondrial function. Circulating GLP-1 concentrations were markedly increased in patients with acute myocardial infarction. Experimental myocardial infarction by permanent LAD ligation proved sufficient to increase GLP-1 secretion in mice. This took place in a time-dependent manner, which coincided with the capacity of DPP-4 inhibition, by linagliptin, to augment left ventricular contractility in a GLP-1 receptor-dependent manner. Mechanistically, DPP-4 inhibition increased AMPK activity and stimulated the mitochondrial respiratory capacity of non-infarcted tissue areas. We describe a new functional relevance of inflammatory GLP-1 secretion for left ventricular contractility during myocardial infarction.

18.
Nat Rev Cardiol ; 15(8): 457-470, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29915254

RESUMO

The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.

19.
Eur Heart J ; 39(20): 1757-1760, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29788301
20.
Circ Res ; 122(10): 1460-1478, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748369

RESUMO

In heart failure, alterations of Na+ and Ca2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca2+ During physiological variations of workload, mitochondrial Ca2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca2+ via the mitochondrial Ca2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca2+ and Na+ handling hampers mitochondrial Ca2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA