Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Filtros adicionais











Intervalo de ano
1.
J Neuromuscul Dis ; 2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31498126

RESUMO

Calpainopathy, also known as limb girdle muscular dystrophy (LGMD) type 2A (LGMD2A) or LGMD R1 Calpain3-related, is one of the most common genetically characterized forms of limb-girdle muscular dystrophy with a wide range of phenotypic severity. We evaluated a consanguineous family with a clinical phenotype consistent with calpainopathy in whom conventional sequencing did not detect any mutations in the CAPN3 gene. Using whole exome sequencing paired with haplotype analysis, we identified a homozygous deep intronic single base pair deletion in CAPN3 (c.946-29delT). Familial segregation studies were consistent with recessive inheritance. Immunoblotting of muscle tissue from the patient showed complete absence of calpain 3. In silico analysis predicted the deletion to disrupt the branch point and subsequently alter splicing of exon 7. Studies of patient fibroblasts and muscle tissue confirmed altered splicing, resulting in an inclusion of a 389-bp intronic sequence upstream of exon 7, originating from a cryptic splice acceptor site in intron 6. This out-of-frame insertion results in a premature stop codon, leading to an apparent absence of protein likely due to degradation of the transcript via nonsense-mediated decay. We then designed phosophorodiamidate morpholino oligomers (PMOs) as splice modulators to block the new splice acceptor site. This approach successfully prevented the aberrant splicing - reverting the majority of the splice to the wildtype transcript. These results confirm the pathogenicity of this novel deep intronic mutation and provide a mutation-specific therapeutic strategy. Thus, deep intronic mutations in CAPN3 may be pathogenic and should be considered in the appropriate clinical setting. The identification of mutations which may be missed by traditional Sanger sequencing is essential as they may be excellent targets for individualized therapeutic strategies using RNA-directed splice modulation.

3.
Am J Hum Genet ; 105(3): 573-587, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447096

RESUMO

A precise genetic diagnosis is the single most important step for families with genetic disorders to enable personalized and preventative medicine. In addition to genetic variants in coding regions (exons) that can change a protein sequence, abnormal pre-mRNA splicing can be devastating for the encoded protein, inducing a frameshift or in-frame deletion/insertion of multiple residues. Non-coding variants that disrupt splicing are extremely challenging to identify. Stemming from an initial clinical discovery in two index Australian families, we define 25 families with genetic disorders caused by a class of pathogenic non-coding splice variant due to intronic deletions. These pathogenic intronic deletions spare all consensus splice motifs, though they critically shorten the minimal distance between the 5' splice-site (5'SS) and branchpoint. The mechanistic basis for abnormal splicing is due to biophysical constraint precluding U1/U2 spliceosome assembly, which stalls in A-complexes (that bridge the 5'SS and branchpoint). Substitution of deleted nucleotides with non-specific sequences restores spliceosome assembly and normal splicing, arguing against loss of an intronic element as the primary causal basis. Incremental lengthening of 5'SS-branchpoint length in our index EMD case subject defines 45-47 nt as the critical elongation enabling (inefficient) spliceosome assembly for EMD intron 5. The 5'SS-branchpoint space constraint mechanism, not currently factored by genomic informatics pipelines, is relevant to diagnosis and precision medicine across the breadth of Mendelian disorders and cancer genomics.

5.
Eur J Hum Genet ; 27(8): 1267-1273, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31024060

RESUMO

We establish autosomal recessive DES variants p.(Leu190Pro) and a deep intronic splice variant causing inclusion of a frameshift-inducing artificial exon/intronic fragment, as the likely cause of myopathy with cardiac involvement in female siblings. Both sisters presented in their twenties with slowly progressive limb girdle weakness, severe systolic dysfunction, and progressive, severe respiratory weakness. Desmin is an intermediate filament protein typically associated with autosomal dominant myofibrillar myopathy with cardiac involvement. However a few rare cases of autosomal recessive desminopathy are reported. In this family, a paternal missense p.(Leu190Pro) variant was viewed unlikely to be causative of autosomal dominant desminopathy, as the father and brothers carrying this variant were clinically unaffected. Clinical fit with a DES-related myopathy encouraged closer scrutiny of all DES variants, identifying a maternal deep intronic variant within intron-7, predicted to create a cryptic splice site, which segregated with disease. RNA sequencing and studies of muscle cDNA confirmed the deep intronic variant caused aberrant splicing of an artificial exon/intronic fragment into maternal DES mRNA transcripts, encoding a premature termination codon, and potently activating nonsense-mediate decay (92% paternal DES transcripts, 8% maternal). Western blot showed 60-75% reduction in desmin levels, likely comprised only of missense p.(Leu190Pro) desmin. Biopsy showed fibre size variation with increased central nuclei. Electron microscopy showed extensive myofibrillar disarray, duplication of the basal lamina, but no inclusions or aggregates. This study expands the phenotypic spectrum of recessive DES cardio/myopathy, and emphasizes the continuing importance of muscle biopsy for functional genomics pursuit of 'tricky' variants in neuromuscular conditions.

6.
JCI Insight ; 4(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30895940

RESUMO

The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.

9.
Genet Med ; 21(4): 798-812, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655598

RESUMO

Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.


Assuntos
Doenças Genéticas Inatas/genética , Heterogeneidade Genética , Genoma Humano/genética , Genômica/tendências , Bases de Dados Genéticas , Predisposição Genética para Doença , Humanos , National Institutes of Health (U.S.) , Linhagem , Estados Unidos , Sequenciamento Completo do Exoma/métodos
10.
Am J Hum Genet ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503522

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.

12.
Physiol Genomics ; 50(11): 929-939, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345904

RESUMO

Next-generation sequencing is commonly used to screen for pathogenic mutations in families with Mendelian disorders, but due to the pace of discoveries, gaps have widened for some diseases between genetic and pathophysiological knowledge. We recruited and analyzed 16 families with limb-girdle muscular dystrophy (LGMD) of Arab descent from Saudi Arabia and Sudan who did not have confirmed genetic diagnoses. The analysis included both traditional and next-generation sequencing approaches. Cellular and metabolic studies were performed on Pyroxd1 siRNA C2C12 myoblasts and controls. Pathogenic mutations were identified in eight of the 16 families. One Sudanese family of Arab descent residing in Saudi Arabia harbored a homozygous c.464A>G, p.Asn155Ser mutation in PYROXD1, a gene recently reported in association with myofibrillar myopathy and whose protein product reduces thiol residues. Pyroxd1 deficiency in murine C2C12 myoblasts yielded evidence for impairments of cellular proliferation, migration, and differentiation, while CG10721 (Pyroxd1 fly homolog) knockdown in Drosophila yielded a lethal phenotype. Further investigations indicated that Pyroxd1 does not localize to mitochondria, yet Pyroxd1 deficiency is associated with decreased cellular respiration. This study identified pathogenic mutations in half of the LGMD families from the cohort, including one in PYROXD1. Developmental impairments were demonstrated in vitro for Pyroxd1 deficiency and in vivo for CG10721 deficiency, with reduced metabolic activity in vitro for Pyroxd1 deficiency.

13.
Nat Commun ; 9(1): 4285, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327483

RESUMO

Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease indications. We interrogate these SNPs by PheWAS in four large cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol, gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760 (p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery.

14.
Hum Mutat ; 39(12): 1827-1834, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30240502

RESUMO

Rare disease investigators constantly face challenges in identifying additional cases to build evidence for gene-disease causality. The Matchmaker Exchange (MME) addresses this limitation by providing a mechanism for matching patients across genomic centers via a federated network. The MME has revolutionized searching for additional cases by making it possible to query across institutional boundaries, so that what was once a laborious and manual process of contacting researchers is now automated and computable. However, while the MME network is beginning to scale, the growth of additional nodes is limited by the lack of easy-to-use solutions that can be implemented by any rare disease database owner, even one without significant software engineering resources. Here, we describe matchbox, which is an open-source, platform-independent, portable bridge between any given rare disease genomic center and the MME network, which has already led to novel gene discoveries. We also describe how matchbox greatly reduces the barrier to participation by overcoming challenges for new databases to join the MME.

15.
Genome Biol ; 19(1): 121, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129428

RESUMO

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .

16.
Skelet Muscle ; 8(1): 23, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30060766

RESUMO

BACKGROUND: Dystroglycanopathies are a clinically and genetically heterogeneous group of disorders that are typically characterised by limb-girdle muscle weakness. Mutations in 18 different genes have been associated with dystroglycanopathies, the encoded proteins of which typically modulate the binding of α-dystroglycan to extracellular matrix ligands by altering its glycosylation. This results in a disruption of the structural integrity of the myocyte, ultimately leading to muscle degeneration. METHODS: Deep phenotypic information was gathered using the PhenoTips online software for 1001 patients with unexplained limb-girdle muscle weakness from 43 different centres across 21 European and Middle Eastern countries. Whole-exome sequencing with at least 250 ng DNA was completed using an Illumina exome capture and a 38 Mb baited target. Genes known to be associated with dystroglycanopathies were analysed for disease-causing variants. RESULTS: Suspected pathogenic variants were detected in DPM3, ISPD, POMT1 and FKTN in one patient each, in POMK in two patients, in GMPPB in three patients, in FKRP in eight patients and in POMT2 in ten patients. This indicated a frequency of 2.7% for the disease group within the cohort of 1001 patients with unexplained limb-girdle muscle weakness. The phenotypes of the 27 patients were highly variable, yet with a fundamental presentation of proximal muscle weakness and elevated serum creatine kinase. CONCLUSIONS: Overall, we have identified 27 patients with suspected pathogenic variants in dystroglycanopathy-associated genes. We present evidence for the genetic and phenotypic diversity of the dystroglycanopathies as a disease group, while also highlighting the advantage of incorporating next-generation sequencing into the diagnostic pathway of rare diseases.


Assuntos
Variação Genética , Distrofia Muscular do Cíngulo dos Membros/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Distroglicanas/metabolismo , Feminino , Predisposição Genética para Doença , Glicosilação , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Fenótipo , Sequenciamento Completo do Exoma/métodos , Adulto Jovem
17.
J Am Soc Nephrol ; 29(8): 2123-2138, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29959197

RESUMO

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of CKD. The discovery of monogenic causes of SRNS has revealed specific pathogenetic pathways, but these monogenic causes do not explain all cases of SRNS. METHODS: To identify novel monogenic causes of SRNS, we screened 665 patients by whole-exome sequencing. We then evaluated the in vitro functional significance of two genes and the mutations therein that we discovered through this sequencing and conducted complementary studies in podocyte-like Drosophila nephrocytes. RESULTS: We identified conserved, homozygous missense mutations of GAPVD1 in two families with early-onset NS and a homozygous missense mutation of ANKFY1 in two siblings with SRNS. GAPVD1 and ANKFY1 interact with the endosomal regulator RAB5. Coimmunoprecipitation assays indicated interaction between GAPVD1 and ANKFY1 proteins, which also colocalized when expressed in HEK293T cells. Silencing either protein diminished the podocyte migration rate. Compared with wild-type GAPVD1 and ANKFY1, the mutated proteins produced upon ectopic expression of GAPVD1 or ANKFY1 bearing the patient-derived mutations exhibited altered binding affinity for active RAB5 and reduced ability to rescue the knockout-induced defect in podocyte migration. Coimmunoprecipitation assays further demonstrated a physical interaction between nephrin and GAPVD1, and immunofluorescence revealed partial colocalization of these proteins in rat glomeruli. The patient-derived GAPVD1 mutations reduced nephrin-GAPVD1 binding affinity. In Drosophila, silencing Gapvd1 impaired endocytosis and caused mistrafficking of the nephrin ortholog. CONCLUSIONS: Mutations in GAPVD1 and probably in ANKFY1 are novel monogenic causes of NS. The discovery of these genes implicates RAB5 regulation in the pathogenesis of human NS.

18.
Genome Res ; 28(7): 968-974, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858273

RESUMO

Variation in RNA splicing (i.e., alternative splicing) plays an important role in many diseases. Variants near 5' and 3' splice sites often affect splicing, but the effects of these variants on splicing and disease have not been fully characterized beyond the two "essential" splice nucleotides flanking each exon. Here we provide quantitative measurements of tolerance to mutational disruptions by position and reference allele-alternative allele combinations. We show that certain reference alleles are particularly sensitive to mutations, regardless of the alternative alleles into which they are mutated. Using public RNA-seq data, we demonstrate that individuals carrying such variants have significantly lower levels of the correctly spliced transcript, compared to individuals without them, and confirm that these specific substitutions are highly enriched for known Mendelian mutations. Our results propose a more refined definition of the "splice region" and offer a new way to prioritize and provide functional interpretation of variants identified in diagnostic sequencing and association studies.


Assuntos
Processamento Alternativo/genética , Mutação/genética , Nucleotídeos/genética , Sítios de Splice de RNA/genética , Processamento de RNA/genética , Alelos , Éxons/genética , Humanos
20.
Neuromuscul Disord ; 28(7): 614-618, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29910097

RESUMO

We describe two Finnish siblings in whom an incidentally detected elevated creatine kinase activity eventually led to a diagnosis of limb-girdle muscular dystrophy-dystroglycanopathy (Type C12; MDDGC12). When diagnosed at age 10 and 13 years, they were mildly affected with a slow or non-progressive disease course. The main symptoms comprised infrequent hip cramps triggered by flexion, neck cramps triggered by yawning, transient growing pains, calf hypertrophy and mild proximal muscle weakness. Their cognitive and motor developments were unremarkable and they were physically active. Whole-exome sequencing revealed compound heterozygous mutations, both of which were novel, in the protein O-mannosyl kinase (POMK) gene in both siblings; a missense mutation, p.Pro322Leu (c.965C > T), and a nonsense mutation, p.Arg46Ter (c.136C > T). The results were confirmed by Sanger sequencing, showing that the parents were heterozygous carriers of one mutation each. This report adds to the literature by providing phenotype and genotype data on this ultra-rare POMK-related dystroglycanopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA