Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Transl Psychiatry ; 9(1): 245, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582756


The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.

Nat Commun ; 10(1): 2548, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186427


Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.

Metilação de DNA/genética , DNA/sangue , Interação Gene-Ambiente , Estudos de Coortes , Epigênese Genética , Feminino , Sangue Fetal , Genótipo , Humanos , Recém-Nascido , Masculino , Gravidez , Fatores de Risco
EBioMedicine ; 42: 188-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30922963


BACKGROUND: Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory. Variations in the functioning of this mechanism likely associate with individual differences in the risk for related mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addiction, dementia) in adults. METHODS: Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association betas described in a conventional GWAS (ADHD in the mesocorticolimbic score and Alzheimer in the hippocampal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addiction, cognitive performance and presence of Alzheimer's disease was investigated. FINDINGS: The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic scores for ADHD, addiction and dementia. INTERPRETATION: This novel, biologically-informed approach enables the use of genomic datasets to probe relevant biological processes involved in neural function and disorders. FUND: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.

Encéfalo/metabolismo , Endofenótipos , Estudos de Associação Genética , Predisposição Genética para Doença , Receptor de Insulina/genética , Encéfalo/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor de Insulina/metabolismo , Reprodutibilidade dos Testes