Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34738202

RESUMO

Most known species of entomopathogenic nematodes (EPNs) are generalist obligate parasites of insects. They kill their hosts within days after infection and mortality is mainly caused by toxins produced by bacteria that co-infect the hosts and serve as food for the nematodes. EPNs can infect a very broad spectrum of insects and these insects can therefore be expected to have evolved strategies to avoid infection. Indeed, ants are known to avoid feeding on EPN-infected insect cadavers, most likely because they are repelled by semiochemicals that emanate from the cadavers. The source and nature of these repellents are so far unknown. In a series of behavioral and chemical analytical experiments we identified hexadecanal and 2-heptadecanone as two compounds that are emitted by insect larva that are infected by the EPN Steinernema feltiae, but not by uninfected larvae. When spiking honey water with the two semiochemicals, they were confirmed to be highly deterrent to the ant Lasius niger. The environmentally benign hexadecanal and 2-heptadecanone could be employed to ward off ants and possibly other pests. Additional experiments are needed to fully determine their application potential.

2.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34790901

RESUMO

Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.

3.
Ecol Evol ; 11(18): 12596-12604, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594523

RESUMO

Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) red palm weevils are often reported in association with different organisms including nematodes. The significance of this interaction and whether nematodes can influence their life-history traits is unclear. We collected Rhynchophorus ferrugineus red palm weevils at different developmental stages and locations in Tunisia, observed and dissected them in search for nematodes and other interacting organisms, established laboratory colonies and identified the nematodes associated with them, and conducted nematode-insect interaction assays to determine the capacity of the nematodes to influence their life-history traits. We observed Beauveria bassiana fungi in larvae, nymph, and adults; Centrouropoda and Uroobovella acari associated with the adults, and Teratorhabditis synpapillata nematodes associated with larvae and adults. Nematode-insect interaction bioassays revealed that T. synpapillata nematodes reduce the lifespan of the insect larvae in a population-dependent manner, but do not influence the lifespan of adults. Our study uncovers an important factor that may determine population dynamics of this important palm pests and provides evidence to conclude that these organisms establish a parasitic relationship, rather than a phoretic relationship.

4.
Int Microbiol ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553287

RESUMO

Soil inhabiting organisms are important determinants of agroecosystem productivity. Understanding the composition, the abundance, and the type of interactions established by soil microorganisms is therefore crucial to design strategies to improve agricultural practices and agroecosystem management. In this study, we collected Zeldia punctata nematodes in maize fields in South Africa and profiled their associated bacterial communities using next-generation sequencing. We observed that Z. punctata nematodes establish associations with ecologically diverse bacterial species. The most abundant species observed are Pseudomonas syringae, a phytopathogenic bacterial complex; Lactobacillus paraplantarum, a broadly distributed bacterial species that is present in soils, water bodies, and animal intestinal tracts and has certain probiotic and antimicrobial properties; and Melissococcus plutonius, a serious pathogenic bacterial species that causes brood disease in honeybees. Our study contributes to a better understanding of the soil bacterial communities associated with nematodes in maize agricultural soils in South Africa and unravels the presence of diverse detrimental and beneficial nematode-associated bacteria.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34524954

RESUMO

Two Gram-negative, rod-shaped bacteria, H1T and H3T, isolated from the digestive tract of Heterorhabditis entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic positions. The 16S rRNA gene sequences of these strains indicate that they belong to the Gammaproteobacteria, to the family Morganellaceae, and to the Photorhabdus genus. Deeper analyses using whole genome-based phylogenetic reconstructions show that strains H1T and H3T are closely related to P. akhurstii DSM 15138T, to P. hainanensis DSM 22397T, and to P. namnaonensis PB45.5T. In silico genomic comparisons confirm these observations and show that strain H1T shares 70.6, 66.8, and 63.5 % digital DNA-DNA hybridization (dDDH) with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively, and that strain H3T shares 76.6, 69.4, and 59.2 % dDDH with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively. Physiological and biochemical characterization reveals that these two strains differ from most of the validly described Photorhabdus species and from their more closely related taxa. Given the clear phylogenetic separations, that the threshold to discriminate species and subspecies is 70 and 79% dDDH, respectively, and that strains H1T and H3T differ physiologically and biochemically from their more closely related taxa, we propose to classify H1T and H3T into new taxa as follows: H3T as a new subspecies within the species P. akhurstii, and H1T as a new species within the Photorhabdus genus, in spite that H1T shares 70.6 % dDDH with P. akhurstii DSM 15138T, score that is slightly higher than the 70 % threshold that delimits species boundaries. The reason for this is that H1T and P. akhurstii DSM 15138T cluster apart in the phylogenetic trees and that dDDH scores between strain H1T and other P. akhurstii strains are lower than 70 %. Hence, the following names are proposed: Photorhabdus hindustanensis sp. nov. with the type strain H1T (=IARI-SGMG3T,=KCTC 82683T=CCM 9150T=CCOS 1975T) and P. akhurstii subsp. bharatensis subsp. nov. with the type strain H3T (=IARI-SGHR2T=KCTC 82684T=CCM 9149T=CCOS 1976T). These propositions automatically create P. akhurstii subsp. akhurstii subsp. nov. with DSM 15138T as the type strain (currently classified as P. akhurstii).


Assuntos
Nematoides , Photorhabdus , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Photorhabdus/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
J Chem Ecol ; 47(10-11): 889-906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415498

RESUMO

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.

7.
Plant Cell Environ ; 44(8): 2672-2686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748996

RESUMO

Plant leaves that are exposed to herbivore-induced plant volatiles (HIPVs) respond by increasing their defenses, a phenomenon referred to as priming. Whether this phenomenon also occurs in the roots is unknown. Using maize plants, Zea mays, whose leaves respond strongly to leaf HIPVs, we measured the impact of belowground HIPVs, emanating from roots infested by the banded cucumber beetle, Diabrotica balteata, on constitutive and herbivore-induced levels of defense-related gene expression, phytohormones, volatile and non-volatile primary and secondary metabolites, growth and herbivore resistance in roots of neighbouring plants. HIPV exposure did not increase constitutive or induced levels of any of the measured root traits. Furthermore, HIPV exposure did not reduce the performance or survival of D. balteata on maize or its ancestor teosinte. Cross-exposure experiments between HIPVs from roots and leaves revealed that maize roots, in contrast to maize leaves, neither emit nor respond strongly to defense-regulating HIPVs. Together, these results demonstrate that volatile-mediated defense regulation is restricted to the leaves of maize. This finding is in line with the lower diffusibility of volatiles in the soil and the availability of other, potentially more efficient, information conduits below ground.

8.
PLoS Biol ; 19(2): e3001114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600420

RESUMO

Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.


Assuntos
Benzoxazinas/metabolismo , Besouros/fisiologia , Açúcares/metabolismo , Zea mays/metabolismo , Animais , Comportamento Apetitivo/fisiologia , Besouros/crescimento & desenvolvimento , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metaboloma , Raízes de Plantas/metabolismo , Zea mays/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-33464198

RESUMO

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA-DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus, Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis. Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis).


Assuntos
Nematoides/microbiologia , Photorhabdus/classificação , Filogenia , Animais , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Egito , Hibridização de Ácido Nucleico , Photorhabdus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia
10.
Acta Parasitol ; 66(1): 236-252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32970280

RESUMO

INTRODUCTION: Entomopathogenic nematodes (EPNs) are important biocontrol agents of insect pests. To increase the availability of locally adapted entomopathogenic nematode isolates for biocontrol programs, a survey of several agricultural soils in Western Uttar Pradesh, India was conducted. MATERIALS AND METHODS: Eight hundred and sixty soil samples from the districts Meerut, Bulandshahr, Baghpat, and Bijnor were collected and examined for the presence of entomopathogenic nematodos using the "Galleria baiting method". Steinernema and Heterorhabditis nematodes were recovered. The isolated Heterorhabditis nematodes were molecularly, and morphologically characterized, and their biocontrol potential was evaluated against Spodoptera litura. Finally, the geographical distribution of entomopathogenic nematodes was studied based on the analysis of ITS GenBank records. RESULTS: A small proportion of the collected soil samples were positive for Heterorhabditis and Steinernema nematodes. Twelve soil samples were positive for the presence of Heterorhabditis nematodes, and 29 samples were positive for Steinernema. The Heterorhabditis nematodes were identified as Heterorhabditis indica based on morphological, morphometrical and molecular analyses. No other species of Heterorhabditis were isolated from the soil samples analyzed, suggesting that this species is dominant in the western part of Uttar Pradesh, India. The morphology of the nematode isolates was somewhat similar to the morphology of the H. indica isolate used for the original description of this species, with a notable exception mucrons were present in the hermaphrodite and female specimens we collected, but this structure was not observed in the specimens used for the original description of the species. Principal component analyses (PCA) show small inter- and intraspecific morphological variability between the nematodes species of the "Indica" clade. The insecticide properties of one isolate, CH7, were evaluated against Spodoptera litura, and the results show that this isolate effectively killed this pest under laboratory conditions, demonstrating its potential as a biocontrol agent. CONCLUSION: This study sets the basis for establishing new biocontrol agents to be used in future pest management programs in India.


Assuntos
Mariposas , Nematoides , Rabditídios , Agricultura , Animais , Feminino , Insetos , Controle Biológico de Vetores , Solo
11.
Zootaxa ; 4878(1): zootaxa.4878.1.3, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33311167

RESUMO

Agricultural soils and open fields from Western Uttar Pradesh (India) were surveyed to determine the presence of entomopathogenic nematodes. From the entomopathogenic nematodes isolated, Heterorhabditis isolates were selected and further characterized using morphological, morphometrical and molecular approaches. The results showed that three isolated nematodes were Heterorhabditis bacteriophora and were associated with Photorhabdus laumondii subsp. clarkei bacteria, while the rests were identified as Heterorhabditis indica. The biocontrol potential of H. bacteriophora against three agricultural pests was evaluated. Nematode infectivity experiments showed that the nematode isolates DH7 and DH8 were highly pathogenic against cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura), and less pathogenic against white grub (Holotrichia serrata) larvae. This study sets the basis for establishing new biocontrol agents to be used in pest management programs in India.


Assuntos
Nematoides , Photorhabdus , Animais , Solo
12.
Plant Cell Environ ; 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33073385

RESUMO

The above article was published in error by the publisher before a final editorial decision had been reached. It has therefore been removed temporarily while the editorial process concludes. The publisher apologizes for the inconvenience.

14.
Sci Rep ; 10(1): 8257, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427834

RESUMO

Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.


Assuntos
Benzoxazinas/farmacologia , Besouros/efeitos dos fármacos , Besouros/parasitologia , Resistência a Inseticidas , Inseticidas/farmacologia , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Zea mays/parasitologia , Animais , Besouros/fisiologia , Herbivoria/efeitos dos fármacos , Herbivoria/fisiologia , Larva/efeitos dos fármacos , Larva/parasitologia , Larva/fisiologia , México , Controle Biológico de Vetores
15.
Microbiology (Reading) ; 166(6): 522-530, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301690

RESUMO

Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Photorhabdus/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Photorhabdus/classificação , Filogenia
16.
Nat Biotechnol ; 38(5): 600-608, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066956

RESUMO

The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode-symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode-symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.


Assuntos
Aquaporinas/genética , Benzoxazinas/farmacologia , Farmacorresistência Bacteriana , Nematoides/microbiologia , Photorhabdus/fisiologia , Zea mays/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Evolução Molecular , Engenharia Genética , Mutação , Nematoides/patogenicidade , Controle Biológico de Vetores , Photorhabdus/efeitos dos fármacos , Photorhabdus/genética , Doenças das Plantas/prevenção & controle , Zea mays/parasitologia
17.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829202

RESUMO

A new population of Metarhabditis amsactae from India is morphologically, morphometrically, and molecularly characterized. This material is characterized by having 0.65 to 1.14 mm length, lips rounded, and grouped in pairs, stoma with metastegostoma bearing setose denticles, pharynx with metacorpus slightly swollen and fusiform, nerve ring, and excretory pore located at isthmus level, female reproductive system didelphic-amphidelphic with vulva equatorial, female tail conical-elongate with acute tip, male tail conical with large and robust posterior filiform part, spicules free with hooked manubrium slightly bent ventrad, gubernaculum with narrow corpus, bursa open leptoderan with eight genital papillae and phasmids posterior to the GP8. Molecular studies based on 18S and 28S rDNA genes are provided for the first time for the species. In addition, integrated morphological, morphometrical, and molecular characters are compared with other previous records of the species. According to our analysis, Metarhabditis longicaudata and other material described as different species are proposed as new junior synonyms of M. amsactae.

18.
Proc Natl Acad Sci U S A ; 116(46): 23174-23181, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659056

RESUMO

Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.


Assuntos
Benzoxazinas/metabolismo , Besouros/parasitologia , Herbivoria , Interações Hospedeiro-Parasita , Rabditídios/fisiologia , Animais , Besouros/metabolismo , Cadeia Alimentar , Zea mays
19.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893760

RESUMO

Desaturases are essentially required for unsaturated fatty acid (UFA) biosynthesis. We identified 10 genes encoding putative desaturases in the transcriptome database of the brown planthopper (BPH), Nilaparvata lugens. These include eight First Desaturase family genes, one cytochrome b5 fused desaturase gene (Nlug-Cytb5r) and one Sphingolipid Desaturase gene (Nlug-ifc). Transcript level profiling revealed significant variation in the expression patterns of these genes across tissues and developmental stages, which occur in a gene-specific manner. Interestingly, their expression was also modulated by the insect food source: the mRNA levels of Nlug-desatC and Nlug-Cytb5r were down-regulated, but the expression level of Nlug-desatA1-b and Nlug-desatA1-c were elevated in the BPH fed on the resistant rice variety Babawee as compared to the non-resistant variety Taichun Native 1 (TN1). Silencing Nlug-desatA1-b, Nlug-desatA1-c, or Nlug-Ifc reduced fatty acid composition and abundance in female BPH 1-d-old-adults compared to controls. Whereas, single knockdown of all ten desaturase genes significantly increased mortality of BPH nymphs compared with controls. Of the ten desaturase genes, knockdown of Nlug-desatA1-b and Nlug-desatA2 caused the highest mortality in BPH (91% and 97%, respectively). Our findings offer a base for expression and functional characterization of newly identified desaturase genes in BPH, and may contribute to RNA interference-based pest management strategies.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Hemípteros/enzimologia , Hemípteros/metabolismo , Família Multigênica , Sequência de Aminoácidos , Animais , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Hemípteros/genética , Funções Verossimilhança , Especificidade de Órgãos/genética , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida
20.
Int J Syst Evol Microbiol ; 69(3): 652-661, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688647

RESUMO

Two Gram-negative, rod-shaped, non-spore-forming bacteria, MEX20-17T and MEX47-22T, were isolated from the digestive system of Heterorhabditis atacamensis and Heterorhabditis mexicana entomopathogenic nematodes, respectively. Their 16S rRNA gene sequences suggest that strains MEX20-17T and MEX47-22T belong to the γ-Proteobacteria and to the genus Photorhabdus. Deeper analyses using housekeeping-gene-based and whole-genome-based phylogenetic reconstruction suggest that MEX20-17T is closely related to Photorhabdus khanii and that MEX47-22T is closely related to Photorhabdus luminescens. Sequence similarity scores confirm these observations: MEX20-17T and P. khanii DSM 3369T share 98.9 % nucleotide sequence identity (NSI) of concatenated housekeeping genes, 70.4 % in silico DNA-DNA hybridization (isDDH) and 97 % orthologous average nucleotide identity (orthoANI); and MEX47-22T and P. luminescens ATCC 29999T share 98.9 % NSI, 70.6 % isDDH and 97 % orthoANI. Physiological characterization indicates that both strains differ from all validly described Photorhabdus species and from their more closely related taxa. We therefore propose to classify MEX20-17T and MEXT47-22T as new subspecies within P. khanii and P. luminescens, respectively. Hence, the following names are proposed for these strains: Photorhabdus khanii subsp. guanajuatensis subsp. nov. with the type strain MEX20-17T (=LMG 30372T=CCOS 1191T) and Photorhabdus luminescenssubsp. mexicana subsp. nov. with the type strain MEX47-22T (=LMG 30528T=CCOS 1199T). These propositions automatically create Photorhabdus khanii subsp. khanii subsp. nov. with DSM 3369T as the type strain (currently classified as P. khanii), and Photorhabdus luminescenssubsp. luminescenssubsp. nov. with ATCC 29999T as the type strain (currently classified as P. luminescens).


Assuntos
Photorhabdus/classificação , Filogenia , Rhabditoidea/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , México , Hibridização de Ácido Nucleico , Photorhabdus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...