Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pediatr Dermatol ; 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31373408

RESUMO

Microphthalmia and linear skin defects syndrome (MLS) is a rare X-linked dominant disorder characterized by microphthalmia and linear atrophic plaques of the face and neck. The diagnosis of MLS can be challenging secondary to both its rarity and to clinical overlap with Goltz syndrome. Whereas the skin lesions of MLS are more likely to improve in appearance with age, the lesions of Goltz are typically persistent.

2.
Am J Hum Genet ; 104(6): 1210-1222, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.

3.
J Child Neurol ; 34(6): 339-358, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30757954

RESUMO

The leukodystrophies are a group of genetic metabolic diseases characterized by an abnormal development or progressive degeneration of the myelin sheath. The myelin is a complex sheath composed of several macromolecules covering axons as an insulator. Each of the leukodystrophies is caused by mutations in genes encoding enzymes that are involved in myelin production and maintenance. The lysosomal storage diseases are inborn disorders of compartmentalized cellular organelles with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes and related organelles. The more than 60 different lysosomal storage diseases are rare diseases; however, collectively, the incidence of lysosomal storage diseases ranges just over 1 in 2500 live births. The majority of lysosomal storage diseases are associated with neurologic manifestations including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. These inborn organelle disorders show wide clinical variability affecting individuals from all age groups. In addition, several of neurologic, also known as neuronopathic, lysosomal storage diseases are associated with some level of white matter disease, which often triggers the diagnostic investigation. Most lysosomal storage diseases are autosomal recessively inherited and few are X-linked, with females being at risk of presenting with mild, but clinically relevant neurologic manifestations. Biochemical assays are the basis of the diagnosis and are usually confirmed by molecular genetic testing. Novel therapies have emerged. However, most affected patients with lysosomal storage diseases have only supportive management to rely on. A better understanding of the mechanisms resulting in the leukodystrophy will certainly result in innovative and efficacious disease-modifying therapies.

4.
Ann Neurol ; 84(5): 766-780, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30295347

RESUMO

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.

6.
J Neurosci Res ; 94(11): 1231-45, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638606

RESUMO

Krabbe's disease, also known as globoid cell leukodystrophy (GLD), is a lysosomal storage disease caused by the deficiency of the lysosomal enzyme ß-galactocerebrosidase (GALC), resulting in severe neurological manifestations related to demyelination secondary to elevated galactosylsphingosine (psychosine) with its subsequent cytotoxicity. The only available treatment is hematopoietic stem cell transplantation, which delays disease onset but does not prevent long-term neurological manifestations. This article describes the identification of small molecules that enhance mutant GALC activity, identified by quantitative cell-based high-throughput screening (qHTS). Using a specific neurologically relevant murine cell line (145M-Twi) modified to express common human hGALC-G270D mutant, we were able to detect GALC activity in a 1,536-well microplate format. The qHTS of approximately 46,000 compounds identified three small molecules that showed significant enhancements of residual mutant GALC activity in primary cell lines from GLD patients. These compounds were shown to increase the levels of GALC-G270D mutant in the lysosomal compartment. In kinetic assessments, these small molecules failed to disturb the GALC kinetic profile under acidic conditions, which is highly desirable for folding-assisting molecules operating in the endoplasmic reticulum and not affecting GALC catalytic properties in the lysosomal compartment. In addition, these small molecules rescued the decreased GALC activity at neutral pH and partially stabilized GALC under heat-denaturating conditions. These drug-like compounds can be used as the starting point to develop novel small-molecule agents to treat the progressive neurodegenerative course of GLD. © 2016 Wiley Periodicals, Inc.


Assuntos
Galactosilceramidase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Leucodistrofia de Células Globoides/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/enzimologia , Galactosilceramidase/química , Galactosilceramidase/genética , Humanos , Leucodistrofia de Células Globoides/patologia , Mutação/genética , Polilisina/metabolismo , Transfecção
7.
Am J Hum Genet ; 98(2): 347-57, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805781

RESUMO

The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.


Assuntos
Arritmias Cardíacas/genética , Debilidade Muscular/genética , Rabdomiólise/genética , Alelos , Árabes/genética , Arritmias Cardíacas/diagnóstico , Sequência de Bases , Criança , Pré-Escolar , Estresse do Retículo Endoplasmático/genética , Grupo com Ancestrais do Continente Europeu/genética , Exoma , Éxons , Feminino , Deleção de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Hispano-Americanos/genética , Homozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Debilidade Muscular/diagnóstico , Linhagem , Rabdomiólise/diagnóstico
8.
JIMD Rep ; 25: 95-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26303609

RESUMO

INTRODUCTION: Agalsidase alfa and agalsidase beta, recombinant enzyme preparations for treatment of Fabry disease (FD), have different approved dosing schedules: 0.2 mg/kg and 1.0 mg/kg every other week (EOW), respectively. METHODS: This open-label, multicenter, exploratory phase 4 study evaluated plasma globotriaosylsphingosine (lyso-GL-3) and plasma and urine globotriaosylceramide (GL-3) levels at baseline and 2, 4, and 6 months after the switch from agalsidase alfa (0.2 mg/kg EOW for ≥12 months) to agalsidase beta (1.0 mg/kg EOW) in 15 male patients with FD. Immunoglobulin (Ig)G antidrug antibody titers were assessed, and safety was monitored throughout the study. RESULTS: Plasma lyso-GL-3 concentrations decreased significantly within 2 months after switch and reductions continued through month 6 (mean absolute changes, -12.8, -16.1, and -16.7 ng/mL at 2, 4, and 6 months, respectively; all P < 0.001). The mean percentage reduction from baseline was 39.5% (P < 0.001) at month 6. For plasma GL-3, the mean absolute change from baseline (-0.9 µg/mL) and percentage reduction (17.9%) at month 6 were both significant (P < 0.05). Urine GL-3 measurements showed intra-patient variability and changes from baseline were not significant. No clinical outcomes were assessed in this 6-month study, and, therefore, no conclusions can be drawn regarding the correlation of observed reductions in glycosphingolipid concentrations with clinically relevant outcomes. There were no differences in IgG antidrug antibody titers between the two enzymes. The switch from agalsidase alfa to agalsidase beta was well tolerated. CONCLUSION: Plasma lyso-GL-3 and GL-3 levels reduced after switching from agalsidase alfa to agalsidase beta, indicating that agalsidase beta has a greater pharmacodynamic effect on these markers at the recommended dose. These data further support the use of agalsidase beta 1.0 mg/kg EOW as enzyme replacement therapy in FD.

9.
Mol Genet Metab ; 111(2): 172-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24094551

RESUMO

Disease-cell models that recapitulate specific molecular phenotypes are essential for the investigation of molecular pathogenesis of neurodegenerative diseases including lysosomal storage diseases (LSDs) with predominant neurological manifestations. Herein we report the development and characterization of a cell model for a rapid neurodegenerative LSDs, globoid-cell leukodystrophy (GLD), mostly known as Krabbe disease. GLD is caused by the deficiency of ß-galactocerebrosidase (GALC), a lysosomal enzyme that hydrolyzes two glycosphingolipids, psychosine and galactosylceramide. Unfortunately, the available culture fibroblasts from GLD patients consist of a limited research tool as these cells fail to accumulate psychosine, the central pathogenic glycosphingolipid in this LSD that results in severe demyelination. Firstly, we obtained brain samples from the Twitcher (Twi) mice (GALC(twi/twi)), the natural mouse model with GALC deficiency. We immortalized the primary neuroglial cultured cells with SV40 large T antigen, generating the 145M-Twi and the 145C-Wt cell lines from the Twi and control mice, respectively. Both cell lines expressed specific oligodendrocyte markers including A2B5 and GalC. The 145M-Twi cells showed biochemical and cellular disturbances related to GLD neuropathogenesis including remarkable caspase-3 activation, release of cytochrome C into the cytosol and expansion of the lysosomal compartment. Under treatment with glycosphingolipids, 145M-Twi cells showed increased LC3B levels, a marker of autophagy. Using the LC-MS/MS method that we developed, the 145M-Twi cells showed significantly higher levels of psychosine. The 145M-Twi and 145C-Wt lines allowed the development of a robust throughput LC-MS/MS assay to measure cellular psychosine levels. In this throughput assay, l-cycloserine showed to significantly reduce the 145M-Twi cellular levels of psychosine. The established 145M-Twi cells are powerful research tools to investigate the neurologically relevant pathogenic pathways as well as to develop primary screening assays for the identification of therapeutic agents for GLD and potentially other glycosphingolipid disorders.


Assuntos
Efeito Fundador , Galactosilceramidase/deficiência , Leucodistrofia de Células Globoides/patologia , Modelos Biológicos , Psicosina/biossíntese , Adulto , Animais , Antígenos Transformantes de Poliomavirus/genética , Autofagia , Biomarcadores/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Química Encefálica , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Transformada , Ciclosserina/farmacologia , Citocromos c/metabolismo , Galactosilceramidas/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Lactente , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/genética , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Psicosina/antagonistas & inibidores , Psicosina/metabolismo
10.
Neurol Clin ; 31(4): 1051-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24176423

RESUMO

The lysosomal storage disorders are a clinically heterogeneous group of inborn errors of metabolism, associated with the accumulation of incompletely degraded macromolecules within several cellular sites. Affected individuals present with a broad range of clinical problems, including hepatosplenomegaly and skeletal dysplasia. Onset of symptoms may range from birth to adulthood. Most are associated with neurologic features. Later-onset forms are often misdiagnosed as symptoms, which might include psychiatric manifestations, are slowly progressive, and may precede other neurologic or systemic features. Symptomatic care, which remains the mainstay for most subtypes, can lead to significant improvement in quality of life.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia
11.
Drug Des Devel Ther ; 7: 729-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966770

RESUMO

Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase A (ASA), resulting in impaired degradation of sulfatide, an essential sphingolipid of myelin. The clinical manifestations of MLD are characterized by progressive demyelination and subsequent neurological symptoms resulting in severe debilitation. The availability of therapeutic options for treating MLD is limited but expanding with a number of early stage clinical trials already in progress. In the development of therapeutic approaches for MLD, scientists have been facing a number of challenges including blood-brain barrier (BBB) penetration, safety issues concerning therapies targeting the central nervous system, uncertainty regarding the ideal timing for intervention in the disease course, and the lack of more in-depth understanding of the molecular pathogenesis of MLD. Here, we discuss the current status of the different approaches to developing therapies for MLD. Hematopoietic stem cell transplantation has been used to treat MLD patients, utilizing both umbilical cord blood and bone marrow sources. Intrathecal enzyme replacement therapy and gene therapies, administered locally into the brain or by generating genetically modified hematopoietic stem cells, are emerging as novel strategies. In pre-clinical studies, different cell delivery systems including microencapsulated cells or selectively neural cells have shown encouraging results. Small molecules that are more likely to cross the BBB can be used as enzyme enhancers of diverse ASA mutants, either as pharmacological chaperones, or proteostasis regulators. Specific small molecules may also be used to reduce the biosynthesis of sulfatides, or target different affected downstream pathways secondary to the primary ASA deficiency. Given the progressive neurodegenerative aspects of MLD, also seen in other lysosomal diseases, current and future therapeutic strategies will be complementary, whether used in combination or separately at specific stages of the disease course, to produce better outcomes for patients afflicted with this devastating inherited disorder.


Assuntos
Leucodistrofia Metacromática/terapia , Alelos , Barreira Hematoencefálica , Cerebrosídeo Sulfatase/genética , Reativadores Enzimáticos , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucodistrofia Metacromática/epidemiologia , Leucodistrofia Metacromática/etiologia , Leucodistrofia Metacromática/genética
12.
J Magn Reson Imaging ; 37(4): 974-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23055421

RESUMO

Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease.


Assuntos
Encéfalo/enzimologia , Deficiências do Desenvolvimento/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Transtornos Psicomotores/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Adenosina/análogos & derivados , Adenosina/análise , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análise , Transtorno Autístico , Análise Mutacional de DNA , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Lactente , Masculino , Transtornos Psicomotores/enzimologia , Transtornos Psicomotores/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Ribonucleosídeos/análise
13.
Anal Biochem ; 434(1): 15-25, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23138179

RESUMO

Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal disease caused by ß-galactocerebrosidase (GALC) deficiency resulting in a rapidly progressive neurodegenerative disorder. Unfortunately, the only available treatment is hematopoietic bone marrow transplantation, which prevents its fulminant manifestation but without treating further neurological manifestations. Here, we describe the development of a cellular high-throughput screening (HTS) assay using GLD patient fibroblasts to screen for small molecules that enhance the residual mutant GALC enzymatic activity. Small molecules have substantial therapeutic potential in GLD because they are more prone to cross the blood-brain barrier, reaching the neuronal affected cells. The transformation of primary skin fibroblasts with SV40 large T antigen has been shown to maintain the biochemical characteristics of the GLD cells and generates sufficient cells for the HTS. Using a specific fluorescent substrate, residual GALC activity from an SV40-transformed GLD patient fibroblast was measurable in high-density microplates. The pilot quantitative HTS against a small compound collection showed robust statistics. The small molecules that showed active concentration-response curves were further studied in primary GLD fibroblasts. This cell-based HTS assay demonstrates the feasibility of employing live GLD patient cells to identify therapeutic agents that can potentially be used for the treatment of this progressive neurodegenerative disease.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/química , Células Cultivadas , Ensaios Enzimáticos , Fibroblastos/citologia , Fibroblastos/metabolismo , Galactosilceramidase/química , Galactosilceramidase/metabolismo , Humanos , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Dobramento de Proteína
14.
PLoS One ; 6(12): e29504, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216298

RESUMO

Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs), inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS) assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA) activity found in patients with metachromatic leukodystrophy (MLD), a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t) cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS), detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S) cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC) acts as "plate fluorescence quencher" in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an opportunity to identify therapeutic small molecules in a disease-cellular environment where potentially disrupted pathways are exposed and available as targets.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Linhagem Celular Transformada , Cerebrosídeo Sulfatase/metabolismo , Colorimetria , Fluorescência , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Miniaturização
15.
Mol Genet Metab ; 98(1-2): 215-24, 2009 Sep-Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19595619

RESUMO

Substrate reduction therapy (SRT) is considered to be a potential therapeutic option for juvenile GM2 gangliosidosis (jGM2g). We evaluated the efficacy of SRT in jGM2g, assessing neurological, neuropsychological and brain magnetic resonance imaging (MRI) outcomes over a 24-month period of treatment. In an open-label and single-center study, five jGM2g patients (mean age 14.6+/-4.5 years) received oral miglustat at doses of 100-200mg t.i.d. adjusted to body surface area. Patients underwent general and neurological examinations, neuropsychological, electrophysiological, and brain MRI studies. All patients showed neurological deterioration over the period of the study, with particularly notable worsening of gait, speech and coordination. One patient experienced acute psychosis, and another showed worsening of pre-existing epilepsy. Some neuropsychological tests showed no evidence of deterioration in the three patients with high enough cognitive functioning for reliable assessment. Profound cognitive impairment in two children precluded neuropsychological evaluation. In four patients, evaluation of brain MRI showed no changes in white matter signal abnormalities and cerebellar atrophy noted at baseline, while one patient showed progression of cerebellar and supratentorial brain atrophy. Transmission electron microscopy analysis of peripheral mononuclear cells showed reduction of intracytoplasmatic inclusions with treatment. SRT with miglustat of patients with jGM2g failed to ameliorate progressive neurological deterioration, but apparently no worsening of some areas of cognitive function tested and brain MRI lesions was noted over 24 months of treatment. The results must be interpreted with care owing to the small sample of patients and the lack of a control-arm.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores Enzimáticos/uso terapêutico , Gangliosidoses GM2/tratamento farmacológico , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Adulto , Mapeamento Encefálico , Criança , Fenômenos Eletrofisiológicos , Inibidores Enzimáticos/farmacologia , Feminino , Gangliosidoses GM2/fisiopatologia , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/ultraestrutura , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/ultraestrutura , Imagem por Ressonância Magnética , Masculino , Exame Neurológico , Testes Neuropsicológicos , Especificidade por Substrato/efeitos dos fármacos , Resultado do Tratamento
16.
J Biol Chem ; 284(35): 23502-16, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19578116

RESUMO

Gaucher disease (GD), the most prevalent lysosomal storage disease, is caused by a deficiency of glucocerebrosidase (GCase). The identification of small molecules acting as agents for enzyme enhancement therapy is an attractive approach for treating different forms of GD. A thermal denaturation assay utilizing wild type GCase was developed to screen a library of 1,040 Food and Drug Administration-approved drugs. Ambroxol (ABX), a drug used to treat airway mucus hypersecretion and hyaline membrane disease in newborns, was identified and found to be a pH-dependent, mixed-type inhibitor of GCase. Its inhibitory activity was maximal at neutral pH, found in the endoplasmic reticulum, and undetectable at the acidic pH of lysosomes. The pH dependence of ABX to bind and stabilize the enzyme was confirmed by monitoring the rate of hydrogen/deuterium exchange at increasing guanidine hydrochloride concentrations. ABX treatment significantly increased N370S and F213I mutant GCase activity and protein levels in GD fibroblasts. These increases were primarily confined to the lysosome-enriched fraction of treated cells, a finding confirmed by confocal immunofluorescence microscopy. Additionally, enhancement of GCase activity and a reduction in glucosylceramide storage was verified in ABX-treated GD lymphoblasts (N370S/N370S). Hydrogen/deuterium exchange mass spectrometry revealed that upon binding of ABX, amino acid segments 243-249, 310-312, and 386-400 near the active site of GCase are stabilized. Consistent with its mixed-type inhibition of GCase, modeling studies indicated that ABX interacts with both active and non-active site residues. Thus, ABX has the biochemical characteristics of a safe and effective enzyme enhancement therapy agent for the treatment of patients with the most common GD genotypes.


Assuntos
Ambroxol/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Doença de Gaucher/enzimologia , Glucosilceramidase/antagonistas & inibidores , Ambroxol/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/química , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Conformação Molecular , Dados de Sequência Molecular
17.
Mol Genet Metab ; 97(4): 284-91, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19447653

RESUMO

GM2 gangliosidosis (GM2g) is an inherited neurodegenerative disorder caused by deficiency of lysosomal beta-hexosaminidase A, resulting in accumulation of GM2 ganglioside, principally in the brain. Substrate reduction therapy is currently under investigation as a treatment. The study investigated the pharmacokinetics and safety of miglustat given as single and multiple doses in infantile and juvenile GM2g patients for 6- and 24-months, respectively. Eleven patients with infantile (n = 6) and juvenile (n = 5) GM2g received oral miglustat at 30-200 mg t.i.d. adjusted to the body surface area. Patients underwent pharmacokinetic assessments on day 1 and at month 3. The pharmacokinetics of miglustat were described by a 2-compartmental model with a lag time, median time to maximum concentration of 2.5 h, and terminal half-life of about 10 h. The pharmacokinetics were time-independent, and did not differ between infantile and juvenile cohorts. The accumulation index was 1.7. Among infantile GM2g patients, the major drug-related adverse events (DRAEs) were abdominal discomfort and flatulence. In the juvenile group, however, the major DRAEs observed were diarrhea and weight loss. One juvenile patient developed peripheral neuropathy, and others showed progression of already established neuropathy, which was judged to be part of the natural progression of the disease. Some mild laboratory abnormalities observed were either transient or attributable to concomitant medications. Miglustat showed similar pharmacokinetic parameters in all patients, with no specific difference between infantile and juvenile forms. Miglustat was shown to be a safe drug, with mild to moderate diarrhea, as an age-dependent DRAE, which was controlled by dietary modification.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Gangliosidoses GM2/tratamento farmacológico , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Adolescente , Adulto , Criança , Pré-Escolar , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glucosiltransferases/antagonistas & inibidores , Humanos , Lactente
18.
Am J Med Genet A ; 146A(12): 1581-6, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18478588

RESUMO

We report on a 6-year-old girl who presented at 6 months of age with seizures, delayed psychomotor development and mild facial dysmorphism. A small muscular ventricular septal defect was documented on echocardiogram and brain MRI showed a frontal brain anomaly. Urine organic acid analysis revealed dicarboxylic aciduria, and plasma acylcarnitine analysis showed marked elevation of octanoyl (C8) and decanoyl (C10) carnitines with C8:C10 ratio of 9:1. These results were indicative of medium chain acyl-CoA dehydrogenase deficiency. ACADM gene sequencing showed an apparent homozygous c.166G > C (Ala31Pro) missense mutation in exon 3; however, only the mother was found to be a carrier of this novel missense mutation. This finding along with non-regressive developmental delay prompted further karyotype and genomic investigations. An interstitial deletion of chromosome 1 was detected by repeat G-banding: 46,XX,del(1)(p22.2p31.1). Parental karyotypes were normal. The deletion was characterized by array CGH analysis using a 1 Mb BAC/PAC array platform. Clones deleted extended from RP11-88B10 (1p31.1) to RP5-1007M22 (1p22.2), a 15.5 Mb deletion which includes the ACADM locus. Clinical review of 6/7 cases of interstitial deletions with breakpoints of 1p22 and 1p31/32, including the patient in this report, indicate a variable phenotype. Thus, although G-band breakpoints are similar, common breakpoints for these alterations are unlikely. This is the first report of a patient with fatty acid oxidation defect caused by a mutation in combination with an interstitial chromosomal deletion.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Transtornos Psicomotores/enzimologia , Transtornos Psicomotores/genética , Convulsões/enzimologia , Convulsões/genética , Acil-CoA Desidrogenase/genética , Carnitina/análogos & derivados , Carnitina/sangue , Criança , Análise Mutacional de DNA , Ácidos Dicarboxílicos/urina , Éxons , Facies , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Mutação de Sentido Incorreto , Análise de Sequência com Séries de Oligonucleotídeos , Transtornos Psicomotores/diagnóstico , Convulsões/diagnóstico
19.
J Biol Chem ; 282(12): 9150-61, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17237499

RESUMO

Late-onset GM2 gangliosidosis is composed of two related, autosomal recessive, neurodegenerative diseases, both resulting from deficiency of lysosomal, heterodimeric beta-hexosaminidase A (Hex A, alphabeta). Pharmacological chaperones (PC) are small molecules that can stabilize the conformation of a mutant protein, allowing it to pass the quality control system of the endoplasmic reticulum. To date all successful PCs have also been competitive inhibitors. Screening for Hex A inhibitors in a library of 1040 Food Drug Administration-approved compounds identified pyrimethamine (PYR (2,4-diamino 5-(4-chlorophenyl)-6-ethylpyrimidine)) as the most potent inhibitor. Cell lines from 10 late-onset Tay-Sachs (11 alpha-mutations, 2 novel) and 7 Sandhoff (9 beta-mutations, 4 novel) disease patients, were cultured with PYR at concentrations corresponding to therapeutic doses. Cells carrying the most common late-onset mutation, alphaG269S, showed significant increases in residual Hex A activity, as did all 7 of the beta-mutants tested. Cells responding to PC treatment included those carrying mutants resulting in reduced Hex heat stability and partial splice junction mutations of the inherently less stable alpha-subunit. PYR, which binds to the active site in domain II, was able to function as PC even to domain I beta-mutants. We concluded that PYR functions as a mutation-specific PC, variably enhancing residual lysosomal Hex A levels in late-onset GM2 gangliosidosis patient cells.


Assuntos
Gangliosidoses GM2/tratamento farmacológico , Gangliosidoses GM2/metabolismo , Pirimetamina/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Hexosaminidase A , Humanos , Lisossomos/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Mutação , Mutação de Sentido Incorreto , Dobramento de Proteína , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
20.
Pediatrics ; 118(5): e1550-62, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17015493

RESUMO

OBJECTIVE: Juvenile GM2 gangliosidosis is a group of inherited neurodegenerative diseases caused by deficiency of lysosomal beta-hexosaminidase resulting in GM2 ganglioside accumulation in brain. The purpose of this study was to delineate the natural history of the condition and identify genotype-phenotype correlations that might be helpful in predicting the course of the disease in individual patients. METHODS: A cohort of 21 patients with juvenile GM2 gangliosidosis, 15 with the Tay-Sachs variant and 6 with the Sandhoff variant, was studied prospectively in 2 centers. Our experience was compared with previously published reports on 134 patients. Information about clinical features, beta-hexosaminidase enzyme activity, and mutation analysis was collected. RESULTS: In our cohort of patients, the mean (+/-SD) age of onset of symptoms was 5.3 +/- 4.1 years, with a mean follow-up time of 8.4 years. The most common symptoms at onset were gait disturbances (66.7%), incoordination (52.4%), speech problems (28.6%), and developmental delay (28.6%). The age of onset of gait disturbances was 7.1 +/- 5.6 years. The mean time for progression to becoming wheelchair-bound was 6.2 +/- 5.5 years. The mean age of onset of speech problems was 7.0 +/- 5.6 years, with a mean time of progression to anarthria of 5.6 +/- 5.3 years. Muscle wasting (10.6 +/- 7.4 years), proximal weakness (11.1 +/- 7.7 years), and incontinence of sphincters (14.6 +/- 9.7 years) appeared later in the course of the disease. Psychiatric disturbances and neuropathy were more prevalent in patients with the Sandhoff variant than in those with the Tay-Sachs variant. However, dysphagia, sphincter incontinence, and sleep problems occurred earlier in those with the Tay-Sachs variant. Cerebellar atrophy was the most common finding on brain MRI (52.9%). The median survival time among the studied and reviewed patients was 14.5 years. The genotype-phenotype correlation revealed that in patients with the Tay-Sachs variant, the presence of R178H and R499H mutations was predictive of an early onset and rapidly progressive course. The presence of either G269S or W474C mutations was associated with a later onset of symptoms along with a more slowly progressive disease course. CONCLUSIONS: Juvenile GM2 gangliosidosis is clinically heterogeneous, not only in terms of age of onset and clinical features but also with regard to the course of the disease. In general, the earlier the onset of symptoms, the more rapidly the disease progresses. The Tay-Sachs and Sandhoff variants differed somewhat in the frequency of specific clinical characteristics. Speech deterioration progressed more rapidly than gait abnormalities in both the Tay-Sachs variant and Sandhoff variant groups. Among patients with the Tay-Sachs variant, the HEXA genotype showed a significant correlation with the clinical course.


Assuntos
Gangliosidoses GM2/diagnóstico , Doença Aguda , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA