RESUMO
The synthesis, structures, and magnetic properties of monomeric half-sandwich iron and cobalt imidazolin-2-iminato complexes have been comprehensively investigated. Salt metathesis reactions of [Cp'M(µ-I)]2 (1-M, M = Fe, Co; Cp' = η5-1,2,4-tri-tert-butylcyclopentadienyl) with [ImDippNLi]2 (ImDippN = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) furnishes the terminal half-sandwich compounds [Cp'M(NImDipp)] (2-M, M = Fe, Co), which can be regarded as models for elusive half-sandwich iron and cobalt imido complexes. X-ray diffraction analysis confirmed the structure motif of a one-legged piano stool. Complex 2-Co can also be prepared by an acid-base reaction between [Cp'Co{N(SiMe3)2}] (3-Co) and ImDippNH. The electronic and magnetic properties of 2-M and 3-Co were probed by 57Fe Mössbauer spectroscopy (M = Fe), X-band EPR spectroscopy (M = Co), and solid-state magnetic susceptibility measurements. In particular, the central metal atom adopts a high-spin (S = 2) state in 2-Fe, while the cobalt complex 2-Co represents a rare example of a Co(II) species with a coordination number different from six displaying a low-spin to high-spin spin-crossover (SCO) behavior. The experimental observations are complemented by DFT calculations.
RESUMO
The concentration of toxic elements present in surface water of Sutlej River and Harike wetland besides Eichhornia crassipes, commonly known as water hyacinth, is estimated employing inductively coupled plasma mass spectrometry (ICP-MS). Toxic elements such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), uranium (U), and zinc (Zn) are identified in the river as well as in Harike wetland catchment. Accumulation of elements in different parts of the water hyacinth plant is observed with the roots exhibiting maximum affinity followed by stem and then leaves. The removal efficacy of pollutants by water hyacinth is estimated using bioconcentration factor (BCF) index. It is found to be different for different elements, with Mn showing the highest and U the lowest magnitude. The study carried out in the present work indicates that rhizofiltration could play an important role in controlling pollutant load.
RESUMO
The half-sandwich complex [Cp'Fe(µ-I)]2 (1; Cp' = η5-1,2,4-(Me3C)3C5H2) is cleaved when heated in toluene to form a cation-anion pair [{Cp'Fe(η6-toluene)}+{Cp'FeI2}-] (2), in which the two Fe(ii) atoms adopt different spin states, i.e., a low-spin (S = 0) and a high-spin (S = 2) configuration. Upon oxidation of 1 with C2H4I2, the thermally stable 15VE species [Cp'FeI2] (3) can be isolated, in which the Fe(iii) atom adopts an intermediate spin (S = 3/2) configuration. Complex 3 is an excellent starting material for further functionalizations and it reacts with Mg(CH2SiMe3)2 to form the unprecedented Fe(iii) (S = 3/2) bis(alkyl) complex [Cp'Fe(CH2SiMe3)2] (4). The respective spin states of complexes 2-4 are confirmed by single-crystal X-ray crystallography, zero-field 57Fe Mössbauer spectroscopy, and solid-state magnetic susceptibility measurements. In contrast to the related 14VE high-spin (S = 2) Fe(ii) alkyl species [Cp'FeCH(SiMe3)2], which resists the reaction with H2 as a consequence of a spin-induced reaction barrier, complex 4 reacts cleanly with H2 (8 bar) in cyclohexane to yield iron hydrides [{Cp'Fe}2(µ-H)3] (5) and [Cp'Fe(µ-H)2]2 (6) in a 1 : 4 ratio. However, when the hydrogenation of 4 is carried out in benzene, a green 19VE [Cp'Fe(η6-C6H6)] (A) intermediate is formed, which dimerizes to the bis(cyclohexadienyl)-bridged product [(Cp'Fe)2(µ2-η5:η5-C12H12)] (7). Further evidence for the intermediacy of [Cp'Fe(η6-C6H6)] (A) was gathered by X-band EPR and UV/vis spectroscopy. Interestingly, attempts to oxidize 7 with AgSbF6 proceeded via C-C bond cleavage instead of metal oxidation to form [Cp'Fe(C6H6)][SbF6] (8).
RESUMO
The iron half-sandwich [Cp'Fe(µ-I)]2 (Cp' = 1,2,4-(Me3C)3C5H2, 1) reacts with the pseudohalides NCO-, SCN-, SeCN- and N3- to give [Cp'Fe(µ-NCO)]2 (2), [Cp'Fe(µ-S)]2 (3), [Cp'Fe(µ-Se2)]2 (4) and [Cp'Fe(µ-N)]2 (5), respectively. Various spectroscopic techniques including X-ray diffraction, solid-state magnetic susceptibility studies and 57Fe Mössbauer spectroscopy were employed in the characterization of these species. Mössbauer spectroscopy shows a decreasing isomer shift with increasing formal oxidation state, ranging from Fe(ii) to Fe(iv), in complexes 1 to 5. The sulfido-bridged dimer 3 exhibits strong antiferromagnetic coupling between the Fe(iii) centers. This leads to temperature-independent paramagnetism (TIP) at low temperature, from which the energy gap between the ground and the excited state can be estimated to be 2J = ca. 700 cm-1. The iron(iv) nitrido complex [Cp'Fe(µ-N)]2 (5) shows no reactivity towards H2 (10 atm), but undergoes clean reactions with CO (5 bar) and XylNC (Xyl = 2,6-Me2C6H3) to form the diamagnetic isocyanate and carbodiimide complexes [Cp'Fe(CO)2(NCO)] (7) and [Cp'Fe(CNXyl)2(NCNXyl)] (8), respectively. All compounds were fully characterized, and density functional theory (DFT) computations provide useful insights into their formation and the electronic structures of complexes 3 and 5.
RESUMO
A series of manganese, iron and cobalt complexes bearing sterically demanding 1,3-disubstituted indenyl ligands, 1,3-(Me(3)C)(2)C(9)H(5) (Ind(tBu)) (1) and 1,3-(C(6)H(11))(2)C(9)H(5) (Ind(cHexyl)) (2), has been prepared. These complexes have been fully characterised by various spectroscopic techniques, elemental analysis, and X-ray diffraction experiments. In addition the electronic and steric properties of these ligands have been evaluated. Although the cone angles and electronic properties are similar to 1,2,4-(Me(3)C)(3)C(5)H(2) (Cp'), indenyl iron half-sandwich complexes are only stable at low temperature. This has been demonstrated for 1-FeI using suitable trapping experiments such as CO or NaCp' addition to yield 1-Fe(CO)(2)I and 1-FeCp', respectively. Overall the metal-ligand bonds in these indenyl compounds are weaker than in the corresponding cyclopentadienyl derivatives. In addition, the bis(indenyl)manganese complexes, 1-Mn and 2-Mn, are high-spin, as established by solid state magnetic susceptibility studies in the temperature range 2-300 K.
RESUMO
A combination of phase-transfer and traditional alkylation strategies has been employed to synthesise sterically encumbered 1,3-di(cyclohexyl) and 1,3-di(tert-butyl) substituted indenes in multi-gram quantities. These indenyl ligands and sterically demanding alkyl cyclopentadienyl ligands have been used to prepare a series of [(η(7)-C(7)H(7))Zr(η(5)-L)] (L = Cp and Ind) complexes by straightforward salt metathesis between [(η(7)-C(7)H(7))ZrCl(tmeda)] and the corresponding sodium indenide or cyclopentadienide. All of these Zr complexes have been characterized by elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. The structural information derived from these studies was employed to evaluate the steric demand of these ligands in a realistic manner.