Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Intensive Care Med ; 47(8): 851-866, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34232336

RESUMO

The role of non-invasive respiratory support (high-flow nasal oxygen and noninvasive ventilation) in the management of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation improvement coupled with lung and diaphragm protection produced by non-invasive support may help to avoid endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local lung overstretch. This ultimately results in additional lung damage (patient self-inflicted lung injury), so that patients intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by high-flow nasal oxygen or delivery of sustained positive end-expiratory pressure through the helmet interface may reduce these risks. In this physiology-to-bedside review, we provide an updated overview about the role of noninvasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. Noninvasive strategies appear safe and effective in mild-to-moderate hypoxemia (PaO2/FiO2 > 150 mmHg), while they can yield delayed intubation with increased mortality in a significant proportion of moderate-to-severe (PaO2/FiO2 ≤ 150 mmHg) cases. High-flow nasal oxygen and helmet noninvasive ventilation represent the most promising techniques for first-line treatment of severe patients. However, no conclusive evidence allows to recommend a single approach over the others in case of moderate-to-severe hypoxemia. During any treatment, strict physiological monitoring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay protective ventilation.


Assuntos
Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Hipóxia/terapia , Intubação Intratraqueal , Oxigênio , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia
3.
JAMA ; 325(17): 1731-1743, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33764378

RESUMO

Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.


Assuntos
COVID-19/complicações , Intubação Intratraqueal/estatística & dados numéricos , Ventilação não Invasiva/instrumentação , Oxigenoterapia/métodos , Insuficiência Respiratória/terapia , Idoso , COVID-19/mortalidade , COVID-19/terapia , Feminino , Mortalidade Hospitalar , Humanos , Hipóxia/etiologia , Masculino , Pessoa de Meia-Idade , Ventilação não Invasiva/métodos , Insuficiência Respiratória/etiologia , Falha de Tratamento
4.
Respir Care ; 66(5): 705-714, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653913

RESUMO

BACKGROUND: The efficacy of noninvasive oxygenation strategies (NIOS) in treating COVID-19 disease is unknown. We conducted a prospective observational study to assess the rate of NIOS failure in subjects treated in the ICU for hypoxemic respiratory failure due to COVID-19. METHODS: Patients receiving first-line treatment NIOS for hypoxemic respiratory failure due to COVID-19 in the ICU of a university hospital were included in this study; laboratory data were collected upon arrival, and 28-d outcome was recorded. After propensity score matching based on Simplified Acute Physiology (SAPS) II score, age, [Formula: see text] and [Formula: see text] at arrival, the NIOS failure rate in subjects with COVID-19 was compared to a previously published cohort who received NIOS during hypoxemic respiratory failure due to other causes. RESULTS: A total of 85 subjects received first-line treatment with NIOS. The most frequently used methods were helmet noninvasive ventilation and high-flow nasal cannula; of these, 52 subjects (61%) required endotracheal intubation. Independent factors associated with NIOS failure were SAPS II score (P = .009) and serum lactate dehydrogenase at enrollment (P = .02); the combination of SAPS II score ≥ 33 with serum lactate dehydrogenase ≥ 405 units/L at ICU admission had 91% specificity in predicting the need for endotracheal intubation. In the propensity-matched cohorts (54 pairs), subjects with COVID-19 showed higher risk of NIOS failure than those with other causes of hypoxemic respiratory failure (59% vs 35%, P = .02), with an adjusted hazard ratio of 2 (95% CI 1.1-3.6, P = .01). CONCLUSIONS: As compared to hypoxemic respiratory failure due to other etiologies, subjects with COVID-19 who were treated with NIOS in the ICU were burdened by a 2-fold higher risk of failure. Subjects with a SAPS II score ≥ 33 and serum lactate dehydrogenase ≥ 405 units/L represent the population with the greatest risk.


Assuntos
COVID-19 , Ventilação não Invasiva , Insuficiência Respiratória , Estado Terminal , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , SARS-CoV-2
6.
Neurocrit Care ; 34(1): 21-30, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32323146

RESUMO

BACKGROUND: Limiting tidal volume (VT), plateau pressure, and driving pressure is essential during the acute respiratory distress syndrome (ARDS), but may be challenging when brain injury coexists due to the risk of hypercapnia. Because lowering dead space enhances CO2 clearance, we conducted a study to determine whether and to what extent replacing heat and moisture exchangers (HME) with heated humidifiers (HH) facilitate safe VT lowering in brain-injured patients with ARDS. METHODS: Brain-injured patients (head trauma or spontaneous cerebral hemorrhage with Glasgow Coma Scale at admission < 9) with mild and moderate ARDS received three ventilatory strategies in a sequential order during continuous paralysis: (1) HME with VT to obtain a PaCO2 within 30-35 mmHg (HME1); (2) HH with VT titrated to obtain the same PaCO2 (HH); and (3) HME1 settings resumed (HME2). Arterial blood gases, static and quasi-static respiratory mechanics, alveolar recruitment by multiple pressure-volume curves, intracranial pressure, cerebral perfusion pressure, mean arterial pressure, and mean flow velocity in the middle cerebral artery by transcranial Doppler were recorded. Dead space was measured and partitioned by volumetric capnography. RESULTS: Eighteen brain-injured patients were studied: 7 (39%) had mild and 11 (61%) had moderate ARDS. At inclusion, median [interquartile range] PaO2/FiO2 was 173 [146-213] and median PEEP was 8 cmH2O [5-9]. HH allowed to reduce VT by 120 ml [95% CI: 98-144], VT/kg predicted body weight by 1.8 ml/kg [95% CI: 1.5-2.1], plateau pressure and driving pressure by 3.7 cmH2O [2.9-4.3], without affecting PaCO2, alveolar recruitment, and oxygenation. This was permitted by lower airway (- 84 ml [95% CI: - 79 to - 89]) and total dead space (- 86 ml [95% CI: - 73 to - 98]). Sixteen patients (89%) showed driving pressure equal or lower than 14 cmH2O while on HH, as compared to 7 (39%) and 8 (44%) during HME1 and HME2 (p < 0.001). No changes in mean arterial pressure, cerebral perfusion pressure, intracranial pressure, and middle cerebral artery mean flow velocity were documented during HH. CONCLUSION: The dead space reduction provided by HH allows to safely reduce VT without modifying PaCO2 nor cerebral perfusion. This permits to provide a wider proportion of brain-injured ARDS patients with less injurious ventilation.

7.
Intensive Care Med ; 46(12): 2226-2237, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33201321

RESUMO

PURPOSE: High flow nasal cannula (HFNC) is a relatively recent respiratory support technique which delivers high flow, heated and humidified controlled concentration of oxygen via the nasal route. Recently, its use has increased for a variety of clinical indications. To guide clinical practice, we developed evidence-based recommendations regarding use of HFNC in various clinical settings. METHODS: We formed a guideline panel composed of clinicians, methodologists and experts in respiratory medicine. Using GRADE, the panel developed recommendations for four actionable questions. RESULTS: The guideline panel made a strong recommendation for HFNC in hypoxemic respiratory failure compared to conventional oxygen therapy (COT) (moderate certainty), a conditional recommendation for HFNC following extubation (moderate certainty), no recommendation regarding HFNC in the peri-intubation period (moderate certainty), and a conditional recommendation for postoperative HFNC in high risk and/or obese patients following cardiac or thoracic surgery (moderate certainty). CONCLUSIONS: This clinical practice guideline synthesizes current best-evidence into four recommendations for HFNC use in patients with hypoxemic respiratory failure, following extubation, in the peri-intubation period, and postoperatively for bedside clinicians.


Assuntos
Ventilação não Invasiva , Insuficiência Respiratória , Adulto , Extubação , Cânula , Humanos , Oxigênio , Oxigenoterapia , Insuficiência Respiratória/terapia
8.
Eur J Anaesthesiol ; 37(4): 265-279, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132408

RESUMO

: Hypoxaemia is a potential life-threatening yet common complication in the peri-operative and periprocedural patient (e.g. during an invasive procedure with risk of deterioration of gas exchange, such as bronchoscopy). The European Society of Anaesthesiology (ESA) and the European Society of Intensive Care Medicine (ESICM) have developed guidelines for the use of noninvasive respiratory support techniques in the hypoxaemic patient in the peri-operative and periprocedural period. The panel outlined five clinical questions regarding treatment with noninvasive respiratory support techniques [conventional oxygen therapy (COT), high flow nasal cannula (HFNC), noninvasive positive pressure ventilation (NIPPV) and continuous positive airway pressure (CPAP)] for hypoxaemic patients with acute peri-operative/periprocedural respiratory failure. The goal was to assess the available literature on the various noninvasive respiratory support techniques, specifically studies that included adult participants with hypoxaemia in the peri-operative/periprocedural period. The literature search strategy was developed by a Cochrane Anaesthesia and Intensive Care trial search specialist in close collaboration with the panel members and the ESA group methodologist. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the level of evidence and to grade recommendations. The final process was then validated by both ESA and ESICM scientific committees. Among 19 recommendations, the two grade 1B recommendations state that in the peri-operative/periprocedural hypoxaemic patient, the use of either NIPPV or CPAP (based on local expertise) is preferred to COT for improvement of oxygenation; and that the panel suggests using NIPPV or CPAP immediately postextubation for hypoxaemic patients at risk of developing acute respiratory failure after abdominal surgery.


Assuntos
Anestesiologia , Ventilação não Invasiva , Insuficiência Respiratória , Adulto , Cuidados Críticos , Humanos , Hipóxia/diagnóstico , Hipóxia/etiologia , Hipóxia/terapia , Oxigenoterapia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia
9.
Intensive Care Med ; 46(4): 697-713, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157356

RESUMO

Hypoxaemia is a potential life-threatening yet common complication in the peri-operative and periprocedural patient (e.g. during an invasive procedure at risk of deterioration of gas exchange, such as bronchoscopy). The European Society of Anaesthesiology (ESA) and the European Society of Intensive Care Medicine (ESICM) developed guidelines for the use of noninvasive respiratory support techniques in the hypoxaemic patient in the peri-operative and periprocedural period. The panel outlined five clinical questions regarding treatment with noninvasive respiratory support techniques [conventional oxygen therapy (COT), high flow nasal cannula, noninvasive positive pressure ventilation (NIPPV) and continuous positive airway pressure (CPAP)] for hypoxaemic patients with acute peri-operative/periprocedural respiratory failure. The goal was to assess the available literature on the various noninvasive respiratory support techniques, specifically studies that included adult participants with hypoxaemia in the peri-operative/periprocedural period. The literature search strategy was developed by a Cochrane Anaesthesia and Intensive Care trial search specialist in close collaboration with the panel members and the ESA group methodologist. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the level of evidence and to grade recommendations. The final process was then validated by both ESA and ESICM scientific committees. Among 19 recommendations, the two grade 1B recommendations state that: in the peri-operative/periprocedural hypoxaemic patient, the use of either NIPPV or CPAP (based on local expertise) is preferred to COT for improvement of oxygenation; and that the panel suggests using NIPPV or CPAP immediately post-extubation for hypoxaemic patients at risk of developing acute respiratory failure after abdominal surgery.


Assuntos
Anestesiologia , Ventilação não Invasiva , Insuficiência Respiratória , Cuidados Críticos , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Oxigenoterapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia
11.
Am J Respir Crit Care Med ; 201(3): 303-312, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31687831

RESUMO

Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.


Assuntos
Hipóxia/fisiopatologia , Hipóxia/terapia , Ventilação não Invasiva/instrumentação , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Doença Aguda , Idoso , Cânula , Estudos Cross-Over , Feminino , Humanos , Hipóxia/complicações , Masculino , Pessoa de Meia-Idade , Insuficiência Respiratória/complicações
12.
Ann Intensive Care ; 9(1): 114, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591659

RESUMO

BACKGROUND: High-flow oxygen therapy via nasal cannula (HFOTNASAL) increases airway pressure, ameliorates oxygenation and reduces work of breathing. High-flow oxygen can be delivered through tracheostomy (HFOTTRACHEAL), but its physiological effects have not been systematically described. We conducted a cross-over study to elucidate the effects of increasing flow rates of HFOTTRACHEAL on gas exchange, respiratory rate and endotracheal pressure and to compare lower airway pressure produced by HFOTNASAL and HFOTTRACHEAL. METHODS: Twenty-six tracheostomized patients underwent standard oxygen therapy through a conventional heat and moisture exchanger, and then HFOTTRACHEAL through a heated humidifier, with gas flow set at 10, 30 and 50 L/min. Each step lasted 30 min; gas flow sequence during HFOTTRACHEAL was randomized. In five patients, measurements were repeated during HFOTTRACHEAL before tracheostomy decannulation and immediately after during HFOTNASAL. In each step, arterial blood gases, respiratory rate, and tracheal pressure were measured. RESULTS: During HFOTTRACHEAL, PaO2/FiO2 ratio and tracheal expiratory pressure slightly increased proportionally to gas flow. The mean [95% confidence interval] expiratory pressure raise induced by 10-L/min increase in flow was 0.2 [0.1-0.2] cmH2O (ρ = 0.77, p < 0.001). Compared to standard oxygen, HFOTTRACHEAL limited the negative inspiratory swing in tracheal pressure; at 50 L/min, but not with other settings, HFOTTRACHEAL increased mean tracheal expiratory pressure by (mean difference [95% CI]) 0.4 [0.3-0.6] cmH2O, peak tracheal expiratory pressure by 0.4 [0.2-0.6] cmH2O, improved PaO2/FiO2 ratio by 40 [8-71] mmHg, and reduced respiratory rate by 1.9 [0.3-3.6] breaths/min without PaCO2 changes. As compared to HFOTTRACHEAL, HFOTNASAL produced higher tracheal mean and peak expiratory pressure (at 50 L/min, mean difference [95% CI]: 3 [1-5] cmH2O and 4 [1-7] cmH2O, respectively). CONCLUSIONS: As compared to standard oxygen, 50 L/min of HFOTTRACHEAL are needed to improve oxygenation, reduce respiratory rate and provide small degree of positive airway expiratory pressure, which, however, is significantly lower than the one produced by HFOTNASAL.

13.
J Crit Care ; 48: 203-210, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240991

RESUMO

PURPOSE: Optimizing pressure support ventilation (PSV) can improve patient-ventilator interaction. We conducted a two-center, randomized cross-over study to determine whether automated PSV lowers asynchrony rate during difficult weaning from mechanical ventilation. METHODS: Thirty patients failing the first weaning attempt were randomly ventilated for 2 three-hour consecutive periods with: 1)PSV managed by physicians (convPSV); 2)PSV managed by Smartcare® (autoPSV). These 2 periods were applied in the afternoon and overnight, for a 12-h total study time. Two independent clinicians offline analyzed ventilator waveforms to compute asynchrony index(AI). RESULTS: AI was lower during autoPSV than during convPSV (medians[interquartile ranges] 5.1[2.6-9.5]% vs. 7.3[2.3-13.4]%, p = 0.02), without changes in the proportion of patients with AI>10%(p = 0.31). Pressure support (PS) variability was higher during autoPSV (p < 0.001), but average PS did not vary. In patients with baseline PS > 12 cmH2O (n = 15), PS and tidal volume were lower with autoPSV (12 [10-15]cmH2O vs. 15 [14-18]cmH2O,p = 0.003; 7.2[6.2-8.3]ml/Kg vs. 8.2[7.1-9.1]ml/Kg, p = 0.02) and AI reduction was driven by lower tidal volume (p = 0.03). In patients with baseline PS ≤ 12 cmH2O, AI reduction during autoPSV was mediated by increased PS variability (p = 0.04). CONCLUSION: During difficult weaning, autoPSV improves patient-ventilator interaction by lowering tidal volume and enhancing PS variability. In expert centres, however, the size effect of the intervention appears clinically small, likely because physicians themselves adequately limit PS and tidal volume.


Assuntos
Suporte Ventilatório Interativo/métodos , Respiração Artificial , Desmame do Respirador/métodos , Idoso , Estudos Cross-Over , Feminino , Humanos , Suporte Ventilatório Interativo/instrumentação , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Volume de Ventilação Pulmonar , Desmame do Respirador/instrumentação
14.
Intensive Care Med ; 44(9): 1493-1501, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30128592

RESUMO

PURPOSE: The intensity of procedural pain in intensive care unit (ICU) patients is well documented. However, little is known about procedural pain distress, the psychological response to pain. METHODS: Post hoc analysis of a multicenter, multinational study of procedural pain. Pain distress was measured before and during procedures (0-10 numeric rating scale). Factors that influenced procedural pain distress were identified by multivariable analyses using a hierarchical model with ICU and country as random effects. RESULTS: A total of 4812 procedures were recorded (3851 patients, 192 ICUs, 28 countries). Pain distress scores were highest for endotracheal suctioning (ETS) and tracheal suctioning, chest tube removal (CTR), and wound drain removal (median [IQRs] = 4 [1.6, 1.7]). Significant relative risks (RR) for a higher degree of pain distress included certain procedures: turning (RR = 1.18), ETS (RR = 1.45), tracheal suctioning (RR = 1.38), CTR (RR = 1.39), wound drain removal (RR = 1.56), and arterial line insertion (RR = 1.41); certain pain behaviors (RR = 1.19-1.28); pre-procedural pain intensity (RR = 1.15); and use of opioids (RR = 1.15-1.22). Patient-related variables that significantly increased the odds of patients having higher procedural pain distress than pain intensity were pre-procedural pain intensity (odds ratio [OR] = 1.05); pre-hospital anxiety (OR = 1.76); receiving pethidine/meperidine (OR = 4.11); or receiving haloperidol (OR = 1.77) prior to the procedure. CONCLUSIONS: Procedural pain has both sensory and emotional dimensions. We found that, although procedural pain intensity (the sensory dimension) and distress (the emotional dimension) may closely covary, there are certain factors than can preferentially influence each of the dimensions. Clinicians are encouraged to appreciate the multidimensionality of pain when they perform procedures and use this knowledge to minimize the patient's pain experience.


Assuntos
Cuidados Críticos/estatística & dados numéricos , Emoções , Dor Processual/psicologia , Estresse Psicológico/etiologia , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Prospectivos , Procedimentos Cirúrgicos Operatórios/efeitos adversos
15.
Lancet Respir Med ; 6(12): 948-962, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30629933

RESUMO

The periextubation period represents a crucial moment in the management of critically ill patients. Extubation failure, defined as the need for reintubation within 2-7 days after a planned extubation, is associated with prolonged mechanical ventilation, increased incidence of ventilator-associated pneumonia, longer intensive care unit and hospital stays, and increased mortality. Conventional oxygen therapy is commonly used after extubation. Additional methods of non-invasive respiratory support, such as non-invasive ventilation and high-flow nasal therapy, can be used to avoid reintubation. The aim of this Review is to describe the pathophysiological mechanisms of postextubation respiratory failure and the available techniques and strategies of respiratory support to avoid reintubation. We summarise and discuss the available evidence supporting the use of these strategies to achieve a tailored therapy for an individual patient at the bedside.


Assuntos
Extubação/efeitos adversos , Ventilação não Invasiva/métodos , Insuficiência Respiratória/fisiopatologia , Desmame do Respirador/métodos , Fatores Etários , Extubação/mortalidade , Obstrução das Vias Respiratórias/etiologia , Obstrução das Vias Respiratórias/terapia , Estado Terminal/terapia , Humanos , Tempo de Internação , Avaliação de Resultados em Cuidados de Saúde , Oxigenoterapia , Período Pós-Operatório , Insuficiência Respiratória/etiologia , Fatores de Risco , Índice de Gravidade de Doença
16.
ERJ Open Res ; 3(4)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29204431

RESUMO

The objective of this study was to assess ability to identify asynchronies during noninvasive ventilation (NIV) through ventilator waveforms according to experience and interface, and to ascertain the influence of breathing pattern and respiratory drive on sensitivity and prevalence of asynchronies. 35 expert and 35 nonexpert physicians evaluated 40 5-min NIV reports displaying flow-time and airway pressure-time tracings; identified asynchronies were compared with those ascertained by three examiners who evaluated the same reports displaying, additionally, tracings of diaphragm electrical activity. We determined: 1) sensitivity, specificity, and positive and negative predictive values; 2) the correlation between the double true index (DTI) of each report (i.e., the ratio between the sum of true positives and true negatives, and the overall breath count) and the corresponding asynchrony index (AI); and 3) the influence of breathing pattern and respiratory drive on both AI and sensitivity. Sensitivities to detect asynchronies were low either according to experience (0.20 (95% CI 0.14-0.29) for expert versus 0.21 (95% CI 0.12-0.30) for nonexpert, p=0.837) or interface (0.28 (95% CI 0.17-0.37) for mask versus 0.10 (95% CI 0.05-0.16) for helmet, p<0.0001). DTI inversely correlated with the AI (r2=0.67, p<0.0001). Breathing pattern and respiratory drive did not affect prevalence of asynchronies and sensitivity. Patient-ventilator asynchrony during NIV is difficult to recognise solely by visual inspection of ventilator waveforms.

17.
Intensive Care Med ; 43(9): 1352-1365, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28785882

RESUMO

In an important sense, support of the respiratory system has been a defining characteristic of intensive care since its inception. The pace of basic and clinical research in this field has escalated over the past two decades, resulting in palpable improvement at the bedside as measured by both efficacy and outcome. As in all medical research, however, novel ideas built upon observations are continually proposed, tested, and either retained or discarded on the basis of the persuasiveness of the evidence. What follows are concise descriptions of the current standards of management practice in respiratory support, the areas of present-day uncertainty, and our suggested agenda for the near future of research aimed at testing current assumptions, probing uncertainties, and solidifying the foundation on which to base our progress to the next level.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Insuficiência Respiratória/terapia , Desmame do Respirador/métodos , Ventiladores Mecânicos/efeitos adversos , Estado Terminal/terapia , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Unidades de Terapia Intensiva , Intubação Intratraqueal/efeitos adversos , Ventilação não Invasiva/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial/métodos , Insuficiência Respiratória/fisiopatologia
18.
Am J Respir Crit Care Med ; 196(8): 964-984, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28406724

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange. Hypoxemia is mainly due to intrapulmonary shunt, whereas increased alveolar dead space explains the alteration of CO2 clearance. Assessment of the severity of gas exchange impairment is a requisite for the characterization of the syndrome and the evaluation of its severity. Confounding factors linked to hemodynamic status can greatly influence the relationship between the severity of lung injury and the degree of hypoxemia and/or the effects of ventilator settings on gas exchange. Apart from situations of rescue treatment, targeting optimal gas exchange in ARDS has become less of a priority compared with prevention of injury. A complex question for clinicians is to understand when improvement in oxygenation and alveolar ventilation is related to a lower degree or risk of injury for the lungs. In this regard, a full understanding of gas exchange mechanism in ARDS is imperative for individualized symptomatic support of patients with ARDS.


Assuntos
Pesquisa Biomédica/história , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/história , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Estados Unidos
20.
Am J Respir Crit Care Med ; 190(3): 282-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25003980

RESUMO

RATIONALE: Oxygen is commonly administered after extubation. Although several devices are available, data about their clinical efficacy are scarce. OBJECTIVES: To compare the effects of the Venturi mask and the nasal high-flow (NHF) therapy on PaO2/FiO2SET ratio after extubation. Secondary endpoints were to assess effects on patient discomfort, adverse events, and clinical outcomes. METHODS: Randomized, controlled, open-label trial on 105 patients with a PaO2/FiO2 ratio less than or equal to 300 immediately before extubation. The Venturi mask (n = 52) or NHF (n = 53) were applied for 48 hours postextubation. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2SET, patient discomfort caused by the interface and by symptoms of airways dryness (on a 10-point numerical rating scale), interface displacements, oxygen desaturations, need for ventilator support, and reintubation were assessed up to 48 hours after extubation. From the 24th hour, PaO2/FiO2SET was higher with the NHF (287 ± 74 vs. 247 ± 81 at 24 h; P = 0.03). Discomfort related both to the interface and to airways dryness was better with NHF (respectively, 2.6 ± 2.2 vs. 5.1 ± 3.3 at 24 h, P = 0.006; 2.2 ± 1.8 vs. 3.7 ± 2.4 at 24 h, P = 0.002). Fewer patients had interface displacements (32% vs. 56%; P = 0.01), oxygen desaturations (40% vs. 75%; P < 0.001), required reintubation (4% vs. 21%; P = 0.01), or any form of ventilator support (7% vs. 35%; P < 0.001) in the NHF group. CONCLUSIONS: Compared with the Venturi mask, NHF results in better oxygenation for the same set FiO2 after extubation. Use of NHF is associated with better comfort, fewer desaturations and interface displacements, and a lower reintubation rate. Clinical trial registered with www.clinicaltrials.gov (NCT 01575353).


Assuntos
Extubação/métodos , Máscaras/estatística & dados numéricos , Oxigenoterapia/métodos , Síndrome do Desconforto Respiratório/terapia , Desmame do Respirador/métodos , Idoso , Extubação/instrumentação , Feminino , Humanos , Intubação Intratraqueal , Itália , Masculino , Máscaras/efeitos adversos , Pessoa de Meia-Idade , Oxigenoterapia/efeitos adversos , Oxigenoterapia/instrumentação , Síndrome do Desconforto Respiratório/etiologia , Desmame do Respirador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...