Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(3): 379-382, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808759

RESUMO

We present an electrochemical approach for depositing composites made of two insoluble inorganic materials, which cannot be obtained by the conventional electrochemical deposition from ionic speices. Applying a negative potential in an aqueous solution generates OH-, which simultaneously destabilizes dispersed nanomaterials, such as insoluble phosphates and sulfides and causes the deposition of a metal hydroxide from its dissolved ions.

2.
Chemistry ; 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31556175

RESUMO

The electrophoretic deposition (EPD) of graphene-based materials on transparent substrates is highly potential for many applications. Several factors can determine the yield of the EPD process, such as applied voltage, deposition time and particularly the presence of dispersion additives (stabilisers) in the suspension solution. This study presents an additive-free EPD of graphene quantum dot (GQD) thin films on an indium tin oxide (ITO) glass substrate and studies the deposition mechanism with the variation of the applied voltage (10-50 V) and deposition time (5-25 min). It is found that due to the small size (≈3.9 nm) and high content of deprotonated carboxylic groups, the GQDs form a stable dispersion (zeta-potential of about -35 mV) without using additives. The GQD thin films can be deposited onto ITO with optimal surface morphology at 30 V in 5 min (surface roughness of approximately (3.1±1.3) nm). In addition, as-fabricated GQD thin films also possess some interesting physico-optical properties, such as a double-peak photoluminescence at about λ=417 and 439 nm, with approximately 98 % visible transmittance. This low-cost and eco-friendly GQD thin film is a promising material for various applications, for example, transparent conductors, supercapacitors and heat conductive films in smart windows.

3.
Chem Soc Rev ; 48(9): 2518-2534, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30976760

RESUMO

Great attention has been recently drawn to metal oxide electrocatalysts for electrocatalysis-based energy storage and conversion devices. To find the optimal electrocatalyst, a prerequisite is an activity metric that reasonably evaluates the intrinsic electrocatalytic activity of a particular catalyst. The intrinsic activity is commonly defined as the specific activity which is the current per unit catalyst surface area. Thus, the precise assessment of intrinsic activity highly depends on the reliable measurement of catalyst surface area, which calls for the knowledge of experimental approaches for determining the surface areas of metal oxide electrocatalysts. This tutorial review aims to summarize and analyze the approaches for measuring the surface areas of metal oxide electrocatalysts for evaluating and comparing their intrinsic electrocatalytic activities. We start by comparing the popular metrics for activity estimation and highlighting the importance of surface-area-normalized activity (i.e. specific activity) for intrinsic chemistry analysis. Second, we provide some general guidelines for experimentally measuring the electrochemically active surface area (ECSA). Third, we review the methods for the surface area measurement of metal oxide electrocatalysts. The detailed procedure for each method is explicitly described to provide a step-by-step manual that guides researchers to perform the measurement; the rationales and uncertainties for each method are discussed to help readers justify the reliable assessment of surface area. Next, we give our recommendations on selecting a rational experimental approach for the surface area measurement of a particular metal oxide electrocatalyst. Lastly, we discuss the future challenges of ECSA measurement and present an exemplary novel ECSA technique.

4.
Phys Chem Chem Phys ; 20(47): 29811-29816, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30465569

RESUMO

Understanding the nature of interactions between inorganic surfaces and biomolecules, such as amino acids and peptides, can enhance the development of new materials. Here, we present single molecule force spectroscopy (SMFS) measurements of the interactions between an atomic force microscopy (AFM) probe, modified with various amino acids, and a titanium dioxide surface. Specifically, we study the affinity of amino acids toward a titanium dioxide surface bearing hydrophobic (Leu), aromatic (Phe) and hydrophilic (Orn) residues. We find that aromatic interactions dominate over aliphatic in their affinity to the titanium dioxide surface. In addition, we show that by combining aromatic and hydrophilic moieties in a single amino acid (NH2-Phe), the adhesion of the latter to the surface increases. Furthermore, the affinity of positively charged amino acids to the titanium dioxide surface is higher than that of uncharged, and can be increased more, with elevating the pH of the buffer above the pKa of the basic residues. The kinetic and thermodynamic parameters imply that the dynamics of the surface-amino acid interface are mostly governed by hydrophobic interactions.

5.
Anal Chim Acta ; 1042: 29-36, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30428985

RESUMO

The sensing performance of a Langmuir-Blodgett monolayer was significantly improved by controlling the film organization at the air-water interface. Cellulose acetate (CA) and 4-tert-butylcalix [6]arene (calix) were co-spread and formed a Langmuir film, which was efficiently transferred onto a preoxidized gold electrode, Auox. The modified gold electrode was applied as a fast, highly sensitive electrochemical sensing platform for the quantitative determination of a model molecule, dopamine (DA). The modified gold electrode, CA-calix/Auox, demonstrated better recognition and sensing ability towards dopamine as compared with electrodes modified by a single component. Under the optimized conditions, the reduction peak currents at the CA-calix/Auox increased linearly within the concentration range of dopamine from 5 to 100 and 100-7500 nM, and exhibited a very low limit of detection (LOD) of 2.54 nM (S/N = 3). These results suggest a simple, superior and efficient approach for the controllable rearrangement of Langmuir-Blodgett monolayers on a molecular level. The electroanalytical performance was optimized from the perspective of the electrode-electrolyte interface.

6.
Nanoscale ; 10(37): 17593-17602, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29896601

RESUMO

We present a novel gas phase detection prototype based on assembling core-shell nanospheres made of a silver core and coated with a molecularly imprinted polymer (MIP) adsorbed onto an interdigitated array (IDA) electrode chemiresistor (CR). The core-shell nanospheres, AgNP@MIPs, were imprinted with linalool, a volatile terpene alcohol, as a model system. The thickness of the MIP layer was tuned to a few nanometers to enable the facile ingress and egress of the linalool, as well as to enhance the electrical transduction through the Ag core. The AgNP@MIPs were spread onto the IDA-CR modified with various positively charged polymers, by drop casting and dip-coating. The AgNP@MIPs were characterized by various techniques such as extra high-resolution scanning and tunnelling electron microscopy and X-ray diffraction. The MIP recognition event was transduced into a measurable increase in the resistance. The response to linalool exposure and removal was fast and the device was fully recovered and could be reused. Finally, the difference in the resistance change between imprinted and non-imprinted nanospheres was substantial.

7.
Nanoscale ; 10(18): 8451-8458, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29616690

RESUMO

Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

8.
ChemSusChem ; 11(5): 907-915, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29388379

RESUMO

The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g-1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g-1 than the GP electrode (185.7 F g-1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors.


Assuntos
Capacitância Elétrica , Grafite/química , Nanoestruturas/química , Eletrodos , Transporte de Elétrons , Níquel/química , Eletricidade Estática
9.
Chemistry ; 24(13): 3161-3164, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334410

RESUMO

The nuclear disasters of Chernobyl and Fukushima presented an urgent need for finding solutions to treatment of radioactive wastes. Among the by-products of nuclear fission is radioactive 137 Cs, which evokes an environmental hazard due to its long half-life (>30 years) and high solubility in water. In this work, a water-soluble organic ligand, readily obtained from alloxan and 1,3,5-benzenetriol, has been found to selectively bind and precipitate Cs+ ions from aqueous solutions. The special rigid structure of the ligand, which consists of a "tripodal" carbonyl base above and below an aromatic plane, contributes to the size-driven selectivity towards the large Cs+ ions and the formation of a giant, insoluble supramolecular complex. In addition to the low costs of the ligand, high yields and effectiveness in precipitating Cs+ ions, the Cs-complex revealed a high endurance to continuous doses of γ-radiation, increasing its potential to act as a precipitating agent for 137 Cs.

10.
Angew Chem Int Ed Engl ; 57(13): 3464-3468, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29377523

RESUMO

Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen-containing atmospheres. The particle size distribution estimated from the diffusion-controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry.

11.
ACS Appl Mater Interfaces ; 9(32): 27045-27053, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783315

RESUMO

Molybdenum trioxide is an interesting inorganic system in which the empty 4d states have potential to hold extra electrons and therefore can change states from insulating opaque (MoO3) to colored semimetallic (HxMoO3). Here, we characterize the local electrogeneration and charge transfer of the synthetic layered two-dimensional 2D MoO3-II (a polymorph of MoO3 and analogous to α-MoO3) in response to two different redox couples, i.e., [Ru(NH3)6]3+ and [Fe(CN)6]3- by scanning electrochemical microscopy (SECM). We identify the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ at the microelectrode that leads to the reduction of MoO3-II to conducting blue-colored molybdenum bronze HxMoO3. It is recognized that the dominant conduction of the charges occurred preferentially at the edges active sites of the sheets, as edges of the sheets are found to be more conducting. This yields positive feedback current when approaching the microelectrode toward 2D MoO3-II-coated electrode. In contrast, the [Fe(CN)6]4-, which is reduced from [Fe(CN)6]3-, is found unfavorable to reduce MoO3-II due to its higher redox potential, thus showing a negative feedback current. The charge transfer on MoO3-II is further studied as a function of applied potential. The results shed light on the charge transfer behavior on the surface of MoO3-II coatings and opens the possibility of locally tuning of their oxidation states.

12.
ACS Appl Mater Interfaces ; 9(31): 26503-26509, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28758735

RESUMO

Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.


Assuntos
Antibacterianos/química , Adsorção , Bactérias , Incrustação Biológica
13.
Chem Commun (Camb) ; 53(28): 4022-4025, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28338701

RESUMO

The electrochemically triggered release of doxorubicin (DOX) from flexible electrodes modified electrophoretically with reduced graphene oxide (rGO)-DOX is reported. The release is driven by a positive potential pulse that decreases the pH of the rGO-DOX surface locally, which is confirmed by scanning electrochemical microscopy (SECM) in situ. In vitro cell viability tests confirms that the delivery system meets therapeutic needs.

14.
Biosens Bioelectron ; 89(Pt 1): 606-611, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26852830

RESUMO

Sensitive and selective detection of cancer biomarkers is vital for the successful diagnosis of early stage cancer and follow-up treatment. Surface Plasmon Resonance (SPR) in combination with different amplification strategies is one of the analytical approaches allowing the screening of protein biomarkers in serum. Here we describe the development of a point-of-care sensor for the detection of folic acid protein (FAP) using graphene-based SPR chips. The exceptional properties of CVD graphene were exploited to construct a highly sensitive and selective SPR chip for folate biomarker sensing in serum. The specific recognition of FAP is based on the interaction between folic acid receptors integrated through π-stacking on the graphene coated SPR chip and the FAP analyte in serum. A simple post-adsorption of human serum:bovine serum albumin (HS:BSA) mixtures onto the folic acid modified sensor resulted in a highly anti-fouling interface, while keeping the sensing capabilities for folate biomarkers. This sensor allowed femtomolar (fM) detection of FAP, a detection limit well adapted and promising for quantitative clinical analysis.


Assuntos
Receptores de Folato com Âncoras de GPI/sangue , Ácido Fólico/química , Grafite/química , Ressonância de Plasmônio de Superfície/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Receptores de Folato com Âncoras de GPI/análise , Humanos , Limite de Detecção , Modelos Moleculares , Sistemas Automatizados de Assistência Junto ao Leito , Ressonância de Plasmônio de Superfície/instrumentação , Propriedades de Superfície
15.
Nanoscale ; 9(2): 485-490, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27824187

RESUMO

An appealing alternative approach to the conventional electrochemical deposition is presented, which can be universally utilized to form nanomaterial coatings from their aqueous dispersions without involving their oxidation-reduction. It is based on altering the ionic strength by electrical potential in the vicinity of the electrode surface, which causes the nanomaterials to deposit. The concept has been demonstrated for four different systems.

16.
Anal Chem ; 88(22): 11007-11015, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27748108

RESUMO

A flow-through electrode made of a carbon nanotubes (CNT) film deposited on a polytetrafluoroethylene (PTFE) membrane was assembled and employed for the determination of low concentration of copper as a model system by linear sweep anodic stripping voltammetry (LSASV). CNT films with areal mass ranging from 0.12 to 0.72 mg cm-2 were characterized by measurement of sheet resistance, water permeation flux and capacitance. Moreover, CNT with two different sizes and PTFE membrane with two different pore diameters (0.45 and 5.0 µm) were evaluated during the optimization of the electrode. Thick layers made of small CNT exhibited the lowest sheet resistance and the greatest analytical response, whereas thin layers of large CNT had the lowest capacitance and the highest permeation flux. Electrodes made of 0.12 mg cm-2 of large CNT deposited on 5.0 µm PTFE enabled sufficiently high mass transfer and collection efficiency for detecting 64 ppt of Cu(II) within 5 min of deposition and 4.0 mL min-1 flow rate. The analytical response was linear over 4 orders of magnitude (10-9 to 10-5 M) of Cu(II). The excellent performance of the flow-through CNT membrane integrated in a flow cell makes it an appealing approach not only for electroanalysis, but also for the electrochemical treatment of waters, such as the removal of low concentrations of heavy metals and organics.

17.
Chem Commun (Camb) ; 52(60): 9379-82, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27375222

RESUMO

An aqueous suspension of WO3/poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid) (PEDTS) hybrid nanoparticles (NPs) is prepared by air-assisted oxidative polymerization and simultaneous attachment of PEDTS on WO3-NPs, and used for electrochromic (EC) film fabrication via air-brush spraying. The hybrid EC device exhibits enhanced EC properties compared to the ones based on WO3-NP or PEDTS alone.

18.
Nanoscale ; 8(29): 13934-43, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26955908

RESUMO

The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of "nanoparticles imprinted matrices" (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.

19.
Biosens Bioelectron ; 75: 389-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342582

RESUMO

The detection of disease markers is considered an important step for early diagnosis of cancer. We design in this work a novel electrochemical sensing platform for the sensitive and selective detection of folic acid protein (FP). The platform is fabricated by electrophoretic deposition (EPD) of reduced graphene oxide (rGO) onto a gold electrode and post-functionalization of rGO with folic acid. Upon FP binding, a significant current decrease can be measured using differential pulse voltammetry (DPV). Using this scheme, a detection limit of 1pM is achieved. Importantly, the method also allows the detection of FP in serum being thus an appealing approach for the sensitive detection of biomarkers in clinical samples.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais , Transportadores de Ácido Fólico/sangue , Ácido Fólico/química , Neoplasias/sangue , Eletrodos , Ácido Fólico/metabolismo , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Óxidos/química
20.
Anal Biochem ; 494: 108-13, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26548959

RESUMO

Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)6(2+/3+) redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ± 20% of the expected percentage oxidation determined by mass spectrometry.


Assuntos
Espectrometria de Massas , Proteínas/química , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Microeletrodos , Compostos Organometálicos/química , Concentração Osmolar , Oxirredução , Proteínas/metabolismo , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA