RESUMO
Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.
Assuntos
Hordeum , Nanopartículas , Cromo/química , Nanopartículas/toxicidade , Nanopartículas/química , Plantas , Raízes de Plantas/metabolismoRESUMO
For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil. This research examined the efficacy of soil remediation using biochar made from three distinct sources: wood, and agricultural residues (sunflower and rice husks). The generated biochars were characterized by SEM/SCEM, XRF, XRD, FTIR, BET Specific Surface Area, and elemental compositions. The presence of hydroxyl and phenolic functional groups and esters in wood, sunflower and rice husk biochar were noted. The total volume of pores was in the following descending order: rice husk > wood > sunflower husk. However, wood biochar had more thermally stable, heterogeneous, irregular-shaped pores than other samples. Adsorption of soil-heavy metals into biochars differed depending on the type of adsorbent, according to data derived from distribution coefficients, sorption degree, Freundlich, and Langmuir adsorption models. The input of biochars to Calcaric Fluvic Arenosol increased its adsorption ability under contamination by Cu(II), Zn(II), and Pb(II) in the following order: wood > rice husk > sunflower husk. The addition of sunflower husk, wood, and rice husk biochar to the soil led to an increase in the removal efficiency of metals in all cases (more than 77%). The increase in the percentage adsorption of Cu and Pb was 9-19%, of Zn was 11-21%. The present results indicated that all biochars functioned well as an absorbent for removing heavy metals from soils. The tailor-made surface chemistry properties and the high sorption efficiency of the biochar from sunflower and rice husks could potentially be used for soil remediation.
Assuntos
Helianthus , Metais Pesados , Oryza , Poluentes do Solo , Solo/química , Chumbo , Metais Pesados/análise , Carvão Vegetal/química , Oryza/química , Adsorção , Poluentes do Solo/análiseRESUMO
Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on Solanum lycopersicum L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem. A dose-dependent response in phytotoxicity were noted, especially in the biomass of the roots and shoots, at doses of 40 and 60 MPC BaP and the accumulation of BaP in S. lycopersicum tissues. Physiological and biochemical response indices were severely damaged based on applied doses of BaP. During the histochemical analysis of the localization of superoxide in the leaves of S. lycopersicum, formazan spots were detected in the area near the leaf's veins. The results of a significant increase in malondialdehyde (MDA) from 2.7 to 5.1 times, proline 1.12- to 2.62-folds, however, a decrease in catalase (CAT) activity was recorded by 1.8 to 1.1 times. The activity of superoxide dismutase (SOD) increased from 1.4 to 2, peroxidase (PRX) from 2.3 to 5.25, ascorbate peroxidase (APOX) by 5.8 to 11.5, glutathione peroxidase (GP) from 3.8 to 7 times, respectively. The structure of the tissues of the roots and leaves of S. lycopersicum in the variants with BaP changed depending on the dose: it increased the intercellular space, cortical layer, and the epidermis, and the structure of the leaf tissues became looser.
Assuntos
Solanum lycopersicum , Humanos , Benzo(a)pireno , Antioxidantes , Superóxido Dismutase , Glutationa Peroxidase , Solo , CatalaseRESUMO
The constant use of zinc oxide nanoparticles (ZnO NPs) in agriculture could increase their concentration in soil, and cause a threat to sustainable crop production. The present study was designed to determine the role of spore-forming and metal-tolerant bacteria, and biochar in alleviating the toxic effects of a high dose of ZnO NPs (2000 mg kg-1) spiked to the soil (Haplic Chernozem) on barley (Hordeum sativum L). The mobile compounds of Zn in soil and their accumulation in H. sativum tissues were increased significantly. The addition of biochar (2.5% of total soil) and bacteria (1010 CFU kg-1) separately and in combination showed a favorable impact on H. sativum growth in ZnO NPs polluted soil. The application of bacteria (separately) to the contaminated soil reduced the mobility of Zn compounds by 7%, due to loosely bound Zn compounds, whereas only biochar inputs lowered Zn mobile compounds mobility by 33%, even the combined application of biochar and bacteria also suppressed the soil Zn mobile compounds. Individual application of biochar and bacteria reduced the Zn plant uptake, i.e., underground parts (roots) by 44% and 20%, and in the above-ground parts of H. sativum plants by 39% and 13%, respectively, compared to ZnO NPs polluted soil treatments. Biochar, both separately and in combination with bacteria improved the root length by 48 and 85%, and plant height by 53 and 40%, respectively, compared to the polluted control. The root length and plant height decreased by 52 and 40% in ZnO NPs spiked soil compared clean soil treatments. Anatomical results showed an improvement in the structural organization of cellular-sub-cellular tissues of root and leaf. The changes in ultrastructural organization of assimilation tissue cells were noted all treatments due to the toxic effects of ZnO NPs compared with control treatment. The results indicate that metal-tolerant bacteria and biochar could be effective as a soil amendment to reduce metal toxicity, enhance crop growth, and improve soil health.
Assuntos
Hordeum , Nanopartículas Metálicas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Hordeum/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Metais/metabolismo , Bactérias/metabolismo , Solo/química , Poluentes do Solo/análise , Nanopartículas Metálicas/toxicidadeRESUMO
Bio-inoculation involves the association of plant with some beneficial microorganisms, and among these microbiotas, those bacteria which can promote plant growth and development are known as Plant Growth Promoting Rhizobacteria (PGPR). It can help a plant directly or indirectly, which includes root development, biological nitrogen (N2) fixation, stress tolerance, cell division and elongation, solubilization of Zinc, Phosphate, Potassium, soil health improvement and many more. PGPR have gained attention as it can be used as biofertilizers and helpful in bioremediation techniques, which in turn can reduce the chemical dependency in agriculture. PGPR mediated plant growth and stress management is developed by the virtue of the interaction of plant and microbial signalling pathways. On the other hand, environmental stresses are something to which a plant is always exposed irrespective of other factors. The present review is all about the better understanding of the convergence strategies of these signalling molecules and the ambiguities of signalling activities occurring in the host due to the interaction with PGPR under environmental stressed conditions.
RESUMO
The present study is aimed to address the morphometric consequences, yield attributes, and biochemical responses of barley plants under the stress of an endocrine disruptor i.e., benzyl-butyl phthalate (BBP). The morphometric analyses (plant length, dry weight, and net primary productivity) revealed that the inhibition induced by BBP was concentration- and time-dependent. The seed weight and the number of seeds per spike have also significantly declined with an increase in BBP doses. Similarly, BBP exhibited significant alterations over the control in the biochemical indices viz., pigments, sugars, proteins, proline, malonaldehyde, and hydrogen peroxide contents of barley plants. Furthermore, BBP stress negatively influenced the activities of antioxidative enzymes viz., SOD, POD, CAT, APX, and GR of barley with an increase in doses and exposure durations due to the over-produced reactive oxygen species. The uptake and transport of BBP were determined and observed as a responsible cue for these toxicological implications in barley plants under BBP exposure. The correlation of barley plants' morpho-biochemical responses with BBP uptake and transport was also established using Pearson's correlation. Thus, this study indicated the toxicological behavior of meagerly explored phthalate (i.e., BBP) in the crop plant and these observations can be utilized for the generation of tolerant cultivars.
Assuntos
Hordeum , Ácidos Ftálicos , Dibutilftalato/toxicidade , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/análise , Oxirredução , HomeostaseRESUMO
The functioning of the photosynthetic apparatus in barley (Hordeum vulgare L.) after 7-days of exposure to bulk (b-ZnO) and nanosized ZnO (n-ZnO) (300, 2000, and 10,000 mg/l) has been investigated. An impact on the amount of chlorophylls, photosynthetic efficiency, as well as the zinc accumulation in chloroplasts was demonstrated. Violation of the chloroplast fine structure was revealed. These changes were generally more pronounced with n-ZnO exposure, especially at high concentrations. For instance, the chlorophyll deficiency under 10,000 mg/l b-ZnO treatment was 31% and with exposure to 10,000 mg/l n-ZnO, the chlorophyll deficiency was already 52%. The expression analysis of the photosynthetic genes revealed their different sensitivity to b-ZnO and n-ZnO exposure. The genes encoding subunits of photosystem II (PSII) and, to a slightly lesser extent, photosystem I (PSI) showed the highest suppression of transcriptional levels. The mRNA levels of the subunits of cytochrome-b6f, NADH dehydrogenase, ribulose-1,5-bisphosphate carboxylase and ATP synthase, which, in addition to linear electron flow (LEF), participate in cyclic electron flow (CEF) and autotrophic CO2 fixation, were more stable or increased under b-ZnO and n-ZnO treatments. At the same time, CEF was increased. It was assumed that under the action of b-ZnO and n-ZnO, the processes of LEF are disrupted, and CEF is activated. This allows the plant to prevent photo-oxidation and compensate for the lack of ATP for the CO2 fixation process, thereby ensuring the stability of photosynthetic function in the initial stages of stress factor exposure. The study of photosynthetic structures of crops is important from the point of view of understanding the risks of reducing the production potential and the level of food security due to the growing use of nanoparticles in agriculture.
Assuntos
Hordeum , Hordeum/metabolismo , Dióxido de Carbono , Transporte de Elétrons , Folhas de Planta , Clorofila/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
Agriculture is a backbone of global economy and most of the population relies on this sector for their livelihood. Chitosan as a biodegradable material thus can be explored for in various fields in its nano form to replace non-biodegradable and toxic compounds. The chitosan has appealing properties like biocompatibility, non-toxicity, biodegradability, and low allergenic, making it useful in several applications including in agriculture sector. Because of their unique properties, chitosan nanoparticles (ChNPs) are extensively applied as a bioagent in various biological and biomedical processes, including wastewater treatment, plant growth promoter, fungicidal agent, wound healing, and scaffold for tissue engineering. Furthermore, the biocompatibility of chitosan nanoparticles (ChNPs) is reported to have other biological properties such as anti-cancerous, antifungal, antioxidant activities, even induces an immune response in the plant, and helps manage biotic and abiotic stresses. Chitosan can also find its application in wastewater treatment, hydrating agents in cosmetics, the food industry, paper, and the textile industry as adhesive, drug-delivering agent in medical as well as for bioimaging. Since chitosan has low toxicity, the nano-formulation of chitosan can be used for the controlled release of fertilizers, pesticides, and plant growth promoters in agriculture fields. The ChNPs applications in precision farming being a novel approach in recent developments. Here we have comprehensively reviewed the major points in this review are; the synthesis of ChNPs by biological resources, their modification and formulation for increasing its applicability, their modified types, and the different agricultural applications of ChNPs.
RESUMO
The poultry industry is generating a significant amount of waste from chicken droppings that are abundant in microbes as well as macro- and micronutrients suitable for manure. It has the potential to improve the microbial activity and nutrient dynamics in the soil, ultimately improving soil fertility. The present study aimed to investigate the effect of chicken droppings manure (CDM) on the diversity of the soil microbiome in the free walking chicken's area located in Stefanidar, Rostov Region, Russia. The data obtained were compared with 16 s rRNA from control samples located not far from the chicken's free-walking area, but not in direct contact with the droppings. Effect of CDM on the physicochemical characteristics of the soil and changes in its microbial diversity were assessed by employing the metagenomic approaches and 16 s rRNA-based taxonomic assessment. The alpha and beta diversity indices revealed that the application of the CDM significantly improved the soil microbial diversity. The 16S taxonomical analysis confirmed Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes as abundant bacterial phylum. It also revealed the increase in the total number of the individual operational taxonomic unit (OTU) species, a qualitative indicator of the rich microbial community. The alpha diversity confirmed that the significant species richness of the soil is associated with the CDM treatment. The increased OTUs represent the qualitative indicator of a community that has been studied up to the depth of 5-20 cm of the CDM treatment range. These findings suggested that CDM-mediated microbial richness are believed to confer the cycling of carbon, nitrogen, and sulfur, along with key soil enzymes such as dehydrogenases and catalase carbohydrate-active enzymes. Hence, the application of CDM could improve soil fertility by nutrient cycling caused by changes in soil microbial dynamics, and it could also be a cost-effective sustainable means of improving soil health.
RESUMO
Heavy metals such as cadmium (Cd) and zinc (Zn) could be dangerous and pollute the environment due to their high migration ability, robust bioavailability, and acute toxicity to soil biota and plants. Considering the above characteristics of these elements, the study's aim was to explore the individual and combined impact of Cd and Zn contamination of Haplic Chernozem on growing two-row spring barley (Hordeum vulgare L.). The accumulation and distribution of Cd and Zn in various parts of H. vulgare have also been studied, which showed that Cd accumulation by H. vulgare occurred more intensely than that by Zn up to eight times. Cadmium and Zn suppress plant growth up to two times, more effect was noted by the combined impact of Cd and Zn. The study of plant morphological characteristics revealed that growth suppression and structural changes in the root and leaf tissues increased in proportion to Cd and Zn concentrations. Detailed analysis of the localizations of Zn and Cd in various organelles of H. vulgare cells was performed. Heavy metals change the ultrastructure of prominent energy-producing organelles in leaf cells, especially chloroplasts and mitochondria. Overall, the current findings offer insights into phytotoxicity induced by Cd and Zn individual application as well as in combination with the H. vulgare plant. Zinc showed protective effects against high doses of Cd under the combined application. These antagonistic interactions reduce their accessibility to H. vulgare. The present work can be useful in restricting the entry of these elements into the food chain and preventing creating a threat to human health.
RESUMO
The effect of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution on the microbiological status of soils on the coast of the Taganrog Bay and adjacent areas was studied. The content of total and exchangeable forms of HMs, the content of 16 priority PAHs and the abundance of several groups of culturable microorganisms was determined, namely copiotrophic, prototrophic, aerobic spore-forming bacteria, actinomycetes, molds and yeasts. The content of total and exchangeable forms of HMs in urban coastal soils in industrial zone significantly exceeded that in non-urban soils. The maximum concentrations of total forms of Mn, Cr, Ni, Cu, Zn, Pb and Cd are 1821, 871, 143, 89, 1390, 317 and 10 mg/kg, respectively. The median value of the total content of 16 PAHs in urban soils is 3 times higher than in the soils of natural areas and reached 4309 ng/g. The lowest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were found in the soils of industrial zone: 6.8, 13.8 and 0.63 million CFU g-1 dry soil, respectively. The largest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were recorded in the soils of natural areas-72.5, 136 and 5.73 million CFU g-1 dry soil, respectively. It was found that the abundance of copiotrophs, prototrophs, and aerobic spore-forming bacteria is more affected by the urbanization of coastal soils including the pollution of HMs and PAHs. Other groups of microorganisms (actinomycetes, molds and yeasts) turned out to be more resistant to anthropogenic factors.
RESUMO
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
RESUMO
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
RESUMO
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
RESUMO
In the present study, the catalytic degradation of selected toxic dyes (methylene blue, 4-nitrophenol, 4-nitroaniline, and congo red) using biosynthesized green silver nanoparticles (AgNPs) of Cestrum nocturnum L. was successfully performed. These AgNPs are efficiently synthesized when a reaction mixture containing 5 mL of aqueous extract (3%) and 100 mL of silver nitrate (1 mM) is exposed under sunlight for 5 min. The synthesis of AgNPs was confirmed based on the change in the color of the reaction mixture from pale yellow to dark brown, with maximum absorbance at 455 nm. Obtained NPs were characterized by different techniques, i.e., FTIR, XRD, HR-TEM, HR-SEM, SAED, XRD, EDX, AFM, and DLS. Green synthesized AgNPs were nearly mono-dispersed, smooth, spherical, and crystalline in nature. The average size of the maximum number of AgNPs was 77.28 ± 2.801 nm. The reduction of dyes using a good reducing agent (NaBH4) was tested. A fast catalytic degradation of dyes took place within a short period of time when AgNPs were added in the reaction mixture in the presence of NaBH4. As a final recommendation, Cestrum nocturnum aqueous leaf extract-mediated AgNPs could be effectively implemented for environmental rehabilitation because of their exceptional performance. This can be utilized in the treatment of industrial wastewater through the breakdown of hazardous dyes.
RESUMO
This work aimed to study the toxic implications of zinc oxide nanoparticles (ZnO NPs) on the physio-biochemical responses of spring barley (Hordeum sativum L.). The experiments were designed in a hydroponic system, and H. sativum was treated with two concentrations of ZnO NPs, namely 300 and 2000 mg/L. The findings demonstrated that ZnO NPs prevent the growth of H. sativum through the modulation of the degree of oxidative stress and the metabolism of antioxidant enzymes. The results showed increased malondialdehyde (MDA) by 1.17- and 1.69-fold, proline by 1.03- and 1.09-fold, and catalase (CAT) by 1.4- and 1.6-fold in shoots for ZnO NPs at 300 and 2000 mg/L, respectively. The activity of superoxide dismutase (SOD) increased by 2 and 3.3 times, ascorbate peroxidase (APOX) by 1.2 and 1.3 times, glutathione-s-transferase (GST) by 1.2 and 2.5 times, and glutathione reductase (GR) by 1.8 and 1.3 times in roots at 300 and 2000 mg/L, respectively. However, the level of δ-aminolevulinic acid (ALA) decreased by 1.4 and 1.3 times in roots and by 1.1 times in both treatments (nano-300 and nano-2000), respectively, indicating changes in the chlorophyll metabolic pathway. The outcomes can be utilized to create a plan of action for plants to withstand the stress brought on by the presence of NPs.
RESUMO
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
RESUMO
The work is devoted to evaluation of the ability of Phragmites australis Сav. to indicate the soil pollution with heavy metals (HMs) and priority polycyclic aromatic hydrocarbons (PAHs) by studying changes in the plant's ultrastructure. The concentration of Mn, Cu, Cr, Cd, Pb, Zn, Ni as well as 16 priority PAHs in hydromorphic soils and macrophyte plants (Phragmites australis Cav.) were increasing with distance decreasing to the power station and approaching to the direction of prevailing wind (northwest). The analyze of distribution of the studied pollutants in plants showed that the highest concentration have prevailed in the roots. A decrease in the diameter of the roots, and an increase in the thickness of the leaf blade was established. The transmission electron microscopy analysis showed that the ultrastructure of P. australis chloroplasts changed affected by accumulation of HMs and PAHs: a rise in the number of plastoglobules; a drop in the number of lamellae in granules, as well as changes in the shape, size, and electron density of mitochondria and peroxisomes. The most serious destructive violations of the main cellular organelles were noted for plants from the site within a 2.5 km from the emissions source and located on the predominant wind rose (north-west) direction. These macrophytes reflect spatial variations of pollutants metals in hydromorphic soils, therefore they are of potential use as bioindicators of environmental pollution.
Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cádmio/análise , Biomarcadores Ambientais , Monitoramento Ambiental , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Poaceae/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análiseRESUMO
For a better understanding of the dissemination of antibiotic resistance genes (ARGs) in natural microbial communities, it is necessary to study the factors influencing it. There are not enough studies showing the connection of some pollutants with the dissemination of ARGs and especially few works on the effect of polycyclic aromatic compounds (PAHs) on the spread of resistance in microbiocenosis. In this respect, the aim of the study was to determine the effect of bioaccessible PAHs on soil resistome. The toxicity and the content of bioaccessible PAHs and ARGs were studied in 64 samples of soils of different types of land use in the Rostov Region of Russia. In most soils, a close positive correlation was demonstrated between different ARGs and bioaccessible PAHs with different content of rings in the structure. Six of the seven studied ARGs correlated with the content of 2-, 3-, 4-, 5- or 6-ring PAHs. The greatest number of close correlations was found between the content of PAHs and ARGs in the soils of protected areas, for agricultural purposes, and in soils of hospitals. The diverse composition of microbial communities in these soils might greatly facilitate this process. A close correlation between various toxic effects identified with a battery of whole-cell bacterial biosensors and bioaccessible PAHs of various compositions was established. This correlation showed possible mechanisms of PAHs' influence on microorganisms (DNA damage, oxidative stress, etc.), which led to a significant increase in horizontal gene transfer and spread of some ARGs in soil microbial communities. All this information, taken together, suggests that bioaccessible PAHs can enhance the spread of antibiotic resistance genes.
RESUMO
Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar's application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.