Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401545

RESUMO

Poly(methyl methacralyate) (PMMA) has long been used in dentistry as a base polymer for dentures, and it is recently being used for the 3D printing of dental materials. Despite its many advantages, its susceptibility to microbial colonization remains to be overcome. In this study, the interface between 3D-printed PMMA specimens and oral salivary biofilm was studied following the addition of zwitterionic materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) or sulfobetaine methacrylate (SB). A significant reduction in bacterial and biofilm adhesions was observed following the addition of MPC or SB, owing to their protein-repellent properties, and there were no significant differences between the two test materials. Although the mechanical properties of the tested materials were degraded, the statistical value of the reduction was minimal and all the properties fulfilled the requirements set by the International Standard, ISO 20795-2. Additionally, both the test materials maintained their resistance to biofilm when subjected to hydrothermal fatigue, with no further deterioration of the mechanical properties. Thus, novel 3D-printable PMMA incorporated with MPC or SB shows durable oral salivary biofilm resistance with maintenance of the physical and mechanical properties.


Assuntos
Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Resinas Compostas/química , Materiais Dentários/farmacologia , Boca/efeitos dos fármacos , Polímeros/química , Impressão Tridimensional/instrumentação , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Humanos , Teste de Materiais , Metacrilatos/química , Boca/microbiologia , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/metabolismo
2.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260367

RESUMO

Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.

3.
J Clin Pediatr Dent ; 44(4): 274-282, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33167022

RESUMO

OBJECTIVE: To investigate the cephalometric changes following anterior repositioning of the mandible for predicting the treatment effects in Class II adolescent patients. STUDY DESIGN: Lateral cephalograms of 28 patients (ANB > 4°) were taken in centric occlusion (CO) and edge-to-edge bite (EtoE) before orthodontic treatment. The patients were classified into two groups according to their mandibular plane angle [MPA; low MPA (LMPA) ≤ 28° and high MPA (HMPA) > 28°]. Cephalometric changes of hard and soft tissues were measured and analyzed with an x-y cranial base coordinate system. RESULTS: For CO to EtoE, there were no significant cephalometric changes between HMPA and LMPA, but the horizontal ratio of soft to hard tissue pogonion (H-Pog'/H-Pog) change was significantly greater with LMPA than with HMPA while the vertical ratio (V-Pog'/V-Pog) showed vice versa. For CO to EtoE, MPA showed significant correlations with H-Pog'/H-Pog and V-Pog'/V-Pog. Y-axis angle, V-Pog'/V-Pog and H-Pog'/H-Pog can be used as good tools to discriminate between HMPA and LMPA. CONCLUSION: Cephalometric findings for CO to EtoE may be useful in predicting the vertical and horizontal changes of hard and soft tissues with the treatment of growing adolescents having various vertical skeletal patterns of Class II malocclusion.


Assuntos
Reposicionamento de Medicamentos , Má Oclusão de Angle Classe II , Adolescente , Cefalometria , Estudos Transversais , Humanos , Má Oclusão de Angle Classe II/diagnóstico por imagem , Má Oclusão de Angle Classe II/terapia , Mandíbula/diagnóstico por imagem , Prognóstico
4.
Materials (Basel) ; 13(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028011

RESUMO

The increasing demand for orthodontic treatment over recent years has led to a growing need for the retrieval and reuse of titanium-based miniscrews to reduce the cost of treatment, especially in patients with early treatment failure due to insufficient primary stability. This in vitro study aimed to evaluate differences in the primary stability between initially inserted and re-inserted miniscrews within different cortical bone densities. Artificial bone was used to simulate cortical bone of different densities, namely 20, 30, 40, and 50 pound per cubic foot (pcf), where primary stability was evaluated based on maximum insertion torque (MIT), maximum removal torque (MRT), horizontal resistance, and micromotion. Scanning electron microscopy was used to evaluate morphological changes in the retrieved miniscrews. The MIT, MRT, horizontal resistance, and micromotion was better in samples with higher cortical bone density, thereby indicating better primary stability (P < 0.05). Furthermore, a significant reduction of MIT, MRT, and horizontal resistance was observed during re-insertion compared with the initial insertion, especially in the higher density cortical bone groups. However, there was no significant change in micromotion. While higher cortical bone density led to better primary stability, it also caused more abrasion to the miniscrews, thereby decreasing the primary stability during re-insertion.

5.
J Mech Behav Biomed Mater ; 110: 103992, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32750663

RESUMO

It is essential for 3D-printed intra-oral appliances to be able to withstand the mechanical and microbial insult existent in the harsh environment of the oral cavity. Poly(methyl methacrylate) (PMMA)-based appliances are widely used in dentistry. Hence, the present study aimed to evaluate the role of nanodiamonds (NDs) as fillers to enhance the resistance to friction and wear. Using a solution-based mixing technique, 0.1 wt% ND was incorporated into the PMMA, and specimens were 3D-printed for tribological and bacterial analysis. The control specimens without ND fillers were tested against specimens with both amine-functionalized NDs (A-ND) and pure non-functionalized NDs (ND). The surface hardness test revealed a statistically significant increase in the Vickers micro-hardness (p < 0.001) in the nanocomposite groups. There was a significant reduction in the coefficient of friction (COF) (p < 0.01) in both the ND and A-ND nanocomposites compared to the stainless steel (SS) counter surfaces. However, for titanium (Ti)-based specimens, the COF of the control group was similar to that of A-ND but lower than that of ND. The wear resistance evaluation revealed that both the ND and A-ND groups displayed enhanced resistance to surface loss in comparison to the controls for both SS and Ti counter-surfaces (p < 0.001). Furthermore, both A-ND and ND exhibited significantly enhanced resistance to the formation of Streptococcus mutans biofilms after 48 h (p < 0.01) compared to the control group. Hence, we concluded that the addition of 0.1 wt% ND in the PMMA-based resin for 3D printing resulted in significant improvement in properties such as COF, wear resistance, and resistance to S. mutans, without any notable impact associated with the functionalization of the NDs.

6.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806515

RESUMO

Since pits and fissures are the areas most commonly affected by caries due to their structural irregularity, bioactive resin-based sealant (RBS) may contribute to the prevention of secondary caries. This study aims to investigate the mechanical, physical, ion-release, enamel remineralisation, and antibacterial capabilities of the novel RBS with bioactive glass (BAG) and 2-methacryloyloxyethyl phosphorylcholine (MPC). For the synthesis, 12.5 wt% BAG and 3 wt% MPC were incorporated into RBS. The contact angle, flexural strength, water sorption, solubility, and viscosity were investigated. The release of multiple ions relating to enamel remineralisation was investigated. Further, the attachments of bovine serum albumin, brain heart infusion broth, and Streptococcus mutans on RBS were studied. Finally, the thickness and biomass of a human saliva-derived microsm biofilm model were analysed before aging, with static immersion aging and with thermocycling aging. In comparison to commercial RBS, BAG+MPC increased the wettability, water sorption, solubility, viscosity, and release of multiple ions, while the flexural strength did not significantly differ. Furthermore, RBS with MPC and BAG+MPC significantly reduced protein and bacteria adhesion and suppressed multi-species biofilm attachment regardless of the existence of aging and its type. The novel RBS has great potential to facilitate enamel remineralisation and suppress biofilm adhesion, which could prevent secondary dental caries.

7.
Polymers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751729

RESUMO

Prevention of dental caries is a key research area, and improvement of the pit and fissure sealants used for caries prevention has been of particular interest. This report describes results of incorporating a zwitterion, sulfobetaine methacrylate (SB), into photo-polymerized resin-based sealants to enhance resistance to cariogenic bacteria and protein adhesion. Varying amounts (1.5-5 wt%) of SB were incorporated into a resin-based sealant, and the flexural strength, wettability, depth of cure, protein adhesion, bacterial viability, and cell cytotoxicity of the resultant sealants were evaluated. The flexural strength decreased with the increasing SB content, but this decrease was statistically significant only for sealants containing ≥3 wt% SB. Incorporating a zwitterion led to a significant reduction in the water contact angle and protein adhesion. The colony-forming unit count showed a significant reduction in the bacterial viability of S. mutans, which was confirmed with microscopic imaging. Moreover, cell cytotoxicity analysis of SB-modified sealants using an L929 fibroblast showed a cytotoxicity comparable to that of an unmodified control, suggesting no adverse effects on the cellular metabolism upon SB introduction. Hence, we conclude that the addition of 1.5-3 wt% SB can significantly enhance the inherent ability of sealants to resist S. mutans adhesion and prevent dental caries.

8.
Korean J Orthod ; 50(3): 157-169, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32475843

RESUMO

Objective: The aim of this retrospective study was to evaluate the pre- and postsurgical bone densities at alveolar and extra-alveolar sites following twojaw orthognathic surgery. Methods: The sample consisted of 10 patients (mean age, 23.2 years; range, 18.0-27.8 years; 8 males, 2 females) who underwent two-jaw orthognathic surgery. A three-dimensional imaging program (Invivo 5) was used with multidetector computed tomography images taken preand postoperatively (obtained 32.3 ± 6.0 days before surgery and 5.8 ± 2.6 days after surgery, respectively) for the measurement of bone densities at the following sites: (1) alveolar bone in the maxilla and mandible, (2) extra-alveolar sites, such as the top of the head, menton (Me), condyle, and the fourth cervical vertebrae (C4). Results: When pre- and postsurgical bone densities were compared, an overall tendency of decrease in bone density was noted. Statistically significant reductions were observed in the densities of cancellous bone at several areas of the maxillary alveolar bone; cortical and cancellous bone in most areas of the mandibular alveolar bone; cortical bone in Me; and cancellous bone in C4. There was no statistically significant difference in bone density in relation to the depth of the alveolar bone. In a comparison of the bone densities between groups with and without genioplasty, there was almost no statistically significant difference. Conclusions: Accelerated tooth movement following orthognathic surgery may be confirmed with reduced bone density. In addition, this study could offer insights into bone metabolism changes following orthognathic surgery, providing direction for further investigations in this field.

9.
Nanomaterials (Basel) ; 10(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357463

RESUMO

The creation of clinically patient-specific 3D-printed biomedical appliances that can withstand the physical stresses of the complex biological environment is an important objective. To that end, this study aimed to evaluate the efficacy of aminated nanodiamonds (A-NDs) as nanofillers in biological-grade acrylate-based 3D-printed materials. Solution-based mixing was used to incorporate 0.1 wt% purified nanodiamond (NDs) and A-NDs into UV-polymerized poly(methyl methacrylate) (PMMA). The ND and A-ND nanocomposites showed significantly lower water contact angles (p < 0.001) and solubilities (p < 0.05) compared to those of the control. Both nanocomposites showed markedly improved mechanical properties, with the A-ND-containing nanocomposite showing a statistically significant increase in the flexural strength (p < 0.001), elastic modulus (p < 0.01), and impact strength (p < 0.001) compared to the control and ND-containing groups. The Vickers hardness and wear-resistance values of the A-ND-incorporated material were significantly higher (p < 0.001) than those of the control and were comparable to the values observed for the ND-containing group. In addition, trueness analysis was used to verify that 3D-printed orthodontic brackets prepared with the A-ND- and ND-nanocomposites exhibited no significant differences in accuracy. Hence, we conclude that the successful incorporation of 0.1 wt% A-ND in UV-polymerized PMMA resin significantly improves the mechanical properties of the resin for the additive manufacturing of precisive 3D-printed biomedical appliances.

10.
Materials (Basel) ; 12(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640147

RESUMO

Herein we evaluate the effect of nanodiamond (ND) incorporation on the mechanical properties of poly(methyl methacrylate) (PMMA) nanocomposite. Three quantities of ND (0.1, 0.3, and 0.5 wt.%) were tested against the control and zirconium oxide nanoparticles (ZrO). Flexural strength and elastic modulus were measured using a three-point bending test, surface hardness was evaluated using the Vickers hardness test, and surface roughness was evaluated using atomic force microscopy (AFM), while fungal adhesion and viability were studied using Candida albicans. Samples were also analyzed for biofilm thickness and biomass in a saliva-derived biofilm model. All groups of ND-PMMA nanocomposites had significantly greater mean flexural strengths and statistically improved elastic modulus, compared to the control and ZrO groups (P < 0.001). The Vickers hardness values significantly increased compared to the control group (P < 0.001) with 0.3% and 0.5% ND. ND addition also gave significant reduction in fungal adhesion and viability (P < 0.001) compared to the control group. Finally, salivary biofilm formation was markedly reduced compared to the ZrO group. Hence, the incorporation of 0.1-0.5 wt.% ND with auto- polymerized PMMA resin significantly improved the flexural strength, elastic modulus, and surface hardness, and provided considerable fungal resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...