Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(12): 4315-4324, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34842420

RESUMO

The effect of the stray field of Fe/Fe3O4 nanoparticles on the angular dependence of the microwave absorption derivative in CoFeB/Ta/CoFeB synthetic ferrimagnetic structures and CoFeB films with perpendicular anisotropy is analyzed, and its application for sensor technology is proposed. The effective field of the "platform-particles" system controlled by the magnetic dipole interaction of the CoFeB-Fe/Fe3O4 system decreased to zero in areas where the platform was magnetostatically coupled with nanoparticles. Micromagnetic modeling demonstrated the distribution of magnetization and resistance in local areas of CoFeB/Ta/CoFeB structures under the nanoparticles. The microwave absorption derivative can be used as an indicator of local magnetization switching of the giant magnetoresistance (GMR) structure under scattering fields of NPs or magnetically labeled cells. The limiting sensitivity of the detection method was 2.4 × 107 nanoparticles, which covered the spin-valve surface. We have proposed to combine the advantages of a GMR sensor with wireless technology of microwave reading of magnetoresistance for the detection of magnetically labeled cells.


Assuntos
Micro-Ondas , Nanopartículas , Magnetismo , Imãs
2.
J Phys Condens Matter ; 34(8)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808613

RESUMO

We present analysis of the effect of Dzyaloshinskii-Moriya interaction (DMI) on spin wave nonreciprocity and bubble expansion asymmetry in Pt/Co/Ir/Co/Pt synthetic ferrimagnets with perpendicular magnetic anisotropy. We propose analysis of the DMI by Brillouin light scattering technique (BLS) and Kerr microscopy (MOKE) in the presence of interlayer exchange coupling strongly changing spin wave dispersion law and field dependences of domain wall velocity in comparison with those observed earlier in Ir/Co/Pt structures with a single Co layer. We have determined DMI values of each Co layer from unusually inverted dependence of velocity of the domain wall on in-plane magnetic field. Opposite signs of effective fields and DMI fields in the two Co layers invert field dependence of the domain wall velocity. DMI energy determined from BLS is higher than values, determined by bubble expansion.

3.
Adv Mater ; 33(39): e2101524, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363253

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the interfacial DMI originating from structural inversion asymmetry and strong spin-orbit coupling favors chiral Néel-type domain walls (DWs) whose energetics and mobility remain at issue. Here, a new effect is characterized in which domains expand unidirectionally in response to a combination of out-of-plane and in-plane magnetic fields, with the growth direction controlled by the in-plane field strength. These growth directionalities and symmetries with applied fields cannot be understood from static treatments alone. The authors theoretically demonstrate that perpendicular field torques stabilize steady-state magnetization profiles highly asymmetric in elastic energy, resulting in a dynamic symmetry breaking consistent with the experimental findings. This phenomenon sheds light on the mechanisms governing the dynamics of Néel-type DWs and expands the utility of field-driven DW motion to probe and control chiral DWs.

4.
Adv Mater ; 33(12): e2007047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604960

RESUMO

Spintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. Very strong current-induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These "self-torques" are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert "self-torques" on single magnetic layers as well as to generate spin currents from a magnetic layer.

5.
Nano Lett ; 21(5): 1943-1947, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33605143

RESUMO

We use ab initio real-time time-dependent density functional theory to investigate the effect of optical and extreme ultraviolet (XUV) circularly polarized femtosecond pulses on the magnetization dynamics of ferromagnetic materials. We demonstrate that the light induces a helicity-dependent reduction of the magnitude of the magnetization. In the XUV regime, where the 3p semicore states are involved, a larger helicity dependence persisting even after the passage of light is exhibited. Finally, we were able to separate the part of the helicity-dependent dynamics due to the absorption from the part due to the inverse Faraday effect. Doing so, we show that the former has, overall, a greater impact on the magnetization than the latter, especially after the pulse and in the XUV regime. This work hints at the yet experimentally unexplored territory of the XUV light-induced helicity-dependent dynamics, which, according to our prediction, could magnify the helicity-dependent dynamics already exhibited in the optical regime.

6.
Adv Sci (Weinh) ; 7(23): 2001996, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304754

RESUMO

New methods to induce magnetization switching in a thin ferromagnetic material using femtosecond laser pulses without the assistance of an applied external magnetic field have recently attracted a lot of interest. It has been shown that by optically triggering the reversal of the magnetization in a GdFeCo layer, the magnetization of a nearby ferromagnetic thin film can also be reversed via spin currents originating in the GdFeCo layer. Here, using a similar structure, it is shown that the magnetization reversal of the GdFeCo is not required in order to reverse the magnetization of the ferromagnetic thin film. This switching is attributed to the ultrafast spin current and can be generated by the GdFeCo demagnetization. A larger energy efficiency of the ferromagnetic layer single pulse switching is obtained for a GdFeCo with a larger Gd concentration. Those ultrafast and energy efficient switchings observed in such spintronic devices open a new path toward ultrafast and energy efficient magnetic memories.

7.
Nano Lett ; 20(12): 8654-8660, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226825

RESUMO

Since it was recently demonstrated in a spin-valve structure, magnetization reversal of a ferromagnetic layer using a single ultrashort optical pulse has attracted attention for future ultrafast and energy-efficient magnetic storage or memory devices. However, the mechanism and the role of the magnetic properties of the ferromagnet as well as the time scale of the magnetization switching are not understood. Here, we investigate single-shot all-optical magnetization switching in a GdFeCo/Cu/[CoxNi1-x/Pt] spin-valve structure. We demonstrate that the threshold fluence for switching both the GdFeCo and the ferromagnetic layer depends on the laser pulse duration and the thickness and the Curie temperature of the ferromagnetic layer. We are able to explain most of the experimental results using a phenomenological model. This work provides a way to engineer ferromagnetic materials for energy efficient single-shot all-optical magnetization switching.

8.
Adv Mater ; 32(26): e1908357, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32452576

RESUMO

Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co2 MnAlx Si1- x Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping. It is experimentally demonstrated that the damping decreases when increasing the spin polarization from 1.1 × 10-3 for Co2 MnAl with 63% spin polarization to an ultralow value of 4.6 × 10-4 for the half-metallic ferromagnet Co2 MnSi. This allows the investigation of the relation between these two parameters and the ultrafast demagnetization time characterizing the loss of magnetization occurring after femtosecond laser pulse excitation. The demagnetization time is observed to be inversely proportional to 1 - P and, as a consequence, to the magnetic damping, which can be attributed to the similarity of the spin angular momentum dissipation processes responsible for these two effects. Altogether, the high-quality Heusler compounds allow control over the band structure and therefore the channel for spin angular momentum dissipation.

9.
Adv Sci (Weinh) ; 6(24): 1901876, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871864

RESUMO

All-optical helicity-dependent switching in ferromagnetic layers has revealed an unprecedented route to manipulate magnetic configurations by circularly polarized femtosecond laser pulses. In this work, rare-earth free synthetic ferrimagnetic heterostructures made from two antiferromagnetically exchange coupled ferromagnetic layers are studied. Experimental results, supported by numerical simulations, show that the designed structures enable all-optical switching which is controlled, not only by light helicity, but also by the relative Curie temperature of each ferromagnetic layer. Indeed, through the antiferromagnetic exchange coupling, the layer with the larger Curie temperature determines the final orientation of the other layer and so the synthetic ferrimagnet. For similar Curie temperatures, helicity-independent back switching is observed and the final magnetic configuration is solely determined by the initial magnetic state. This demonstration of electrically-detected, optical control of engineered rare-earth free heterostructures opens a novel route toward practical opto-spintronics.

10.
Phys Rev Lett ; 123(2): 027202, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386535

RESUMO

We demonstrate that femtosecond laser pulses allow triggering high-frequency standing spin-wave modes in nanoscale thin films of a bismuth-substituted yttrium iron garnet. By varying the strength of the external magnetic field, we prove that two distinct branches of the dispersion relation are excited for all the modes. This is reflected in particular at a very weak magnetic field (∼33 mT) by a spin dynamics with a frequency up to 15 GHz, which is 15 times higher than the one associated with the ferromagnetic resonance mode. We argue that this phenomenon is triggered by ultrafast changes of the magnetic anisotropy via laser excitation of incoherent and coherent phonons. These findings open exciting prospects for ultrafast photo magnonics.

11.
Adv Mater ; 31(35): e1901681, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282067

RESUMO

Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx (FeCo)1- x by the topological insulator [Bi2 Se3 and (BiSb)2 Te3 ] is investigated at room temperature. The switching current density of (BiSb)2 Te3 (1.20 × 105 A cm-2 ) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx (FeCo)1- x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices.

12.
Nano Lett ; 19(5): 3019-3026, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30933564

RESUMO

Study of resonant tunneling through multimetallic quantum well (QW) structure is not only important for the fundamental understanding of quantum transport but also for the great potential to generate advanced functionalities of spintronic devices. However, it remains challenging to engineer such a structure due to the short electron phase coherence length in metallic QW system. Here, we demonstrate the successful fabrication of double-QW structure in a single fully epitaxial magnetic tunnel junction (MTJ) heterostructure, where two Fe QW layers are sandwiched between three MgAlO x tunnel barriers. We show clear evidence of the coherent resonant tunneling through the discrete QW states in the two QWs. The coherent resonant tunneling condition is fulfilled only when the middle barrier between the two QWs is thin enough and available QW states are present simultaneously in both QWs under a certain bias. Compared to the single QW structure, the resonant tunneling in double-QW MTJ produces strong conductivity oscillations with much narrower peak width (about half) owing to the enhanced energy filtering effect. This study presents a comprehensive understanding of the resonant tunneling mechanism in MTJ with multiple QWs, which is essential for future development of new spintronic devices operating in the quantum tunneling regime.

13.
Nano Lett ; 19(1): 90-99, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30472859

RESUMO

Due to the difficulty of growing high-quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was limited to lateral geometry devices. In this work, by using an ultrahigh-vacuum wafer-bonding technique, we have successfully fabricated metal-semiconductor-metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2 µm in n-type Si at room temperature. In those experiments, a pure propagating spin current is generated via ferromagnetic resonance spin pumping and converted into a measurable voltage by using the inverse spin Hall effect occurring in the top Pt layer. A systematic study varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO-Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO-Si interface states appears to be a prerequisite to establishing the necessary out-of-equilibrium spin population in Si under the spin-pumping action.

14.
Nano Lett ; 18(11): 7362-7371, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30295499

RESUMO

Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse. The skyrmion bubble density increases with the laser fluence, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.

15.
Adv Mater ; 30(51): e1804004, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30335226

RESUMO

All-optical ultrafast magnetization switching in magnetic material thin film without the assistance of an applied external magnetic field is explored for future ultrafast and energy-efficient magnetic storage and memories. It is shown that femtosecond (fs) light pulses induce magnetization reversal in a large variety of magnetic materials. However, so far, only GdFeCo-based ferrimagnetic thin films exhibit magnetization switching via a single optical pulse. Here, the single-pulse switching of Co/Pt multilayers within a magnetic spin-valve structure ([Co/Pt]/Cu/GdFeCo) is demonstrated and four possible magnetic configurations of the spin valve can be accessed using a sequence of single fs light pulses. The experimental study reveals that the magnetization final state of the ferromagnetic [Co/Pt] layer is determined by spin-polarized currents generated by the light pulse interactions with the GdFeCo layer. This work provides an approach to deterministically switch ferromagnetic layers and a pathway to engineering materials for opto-magnetic multi-bit recording.

16.
ACS Appl Mater Interfaces ; 10(36): 30614-30622, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125490

RESUMO

The ferroelectric control of spin-polarization at ferromagnet (FM)/ferroelectric organic (FE-Org) interface by electrically switching the ferroelectric polarization of the FE-Org has been recently realized in the organic multiferroic tunnel junctions (OMFTJs) and gained intensive interests for future multifunctional organic spintronic applications. Here, we report the evidence of ferroelectric "ailing-channel" in the organic barrier, which can effectively pin the ferroelectric domain, resulting in nonswitchable spin polarization at the FM/FE-Org interface. In particular, OMFTJs based on La0.6Sr0.4MnO3/P(VDF-TrFE) ( t)/Co/Au structures with different P(VDF-TrFE) thickness ( t) were fabricated. The combined advanced electron microscopy and spectroscopy studies clearly reveal that very limited Co diffusion exists in the P(VDF-TrFE) organic barrier when the Au/Co electrode is deposited around 80K. Pot-hole structures at the boundary between the P(VDF-TrFE) needle-like grains are evidenced to induce "ailing-channels" that hinder efficient ferroelectric polarization of the organic barrier and result in the quenching of the spin polarization switching at Co/P(VDF-TrFE) interface. Furthermore, the spin diffusion length in the negatively polarized P(VDF-TrFE) is measured to be about 7.2 nm at 20K. The evidence of the mechanism of ferroelectric "ailing-channels" is of essential importance to improve the performance of OMFTJ and master the key condition for an efficient ferroelectric control of the spin polarization of "spinterface".

17.
Nanoscale ; 10(21): 10213-10220, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29789851

RESUMO

Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

18.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517243

RESUMO

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

19.
Adv Mater ; 29(42)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28961343

RESUMO

Current-induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single- electronic-pulse-driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gdx [FeCo]1-x -based structures are studied to compare the effect of femtosecond laser and hot-electron pulses. It is demonstrated that a single femtosecond hot-electron pulse causes deterministic magnetization reversal in either Gd-rich and FeCo-rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time-resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot-electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current-induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer.

20.
Nat Commun ; 8: 14947, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387252

RESUMO

Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, the demonstration of an electron spin transport through a semiconducting MoS2 channel remains challenging. Here we show the evidence of the electrical spin injection and detection in the conduction band of a multilayer MoS2 semiconducting channel using a two-terminal spin-valve configuration geometry. A magnetoresistance around 1% has been observed through a 450 nm long, 6 monolayer thick MoS2 channel with a Co/MgO tunnelling spin injector and detector. It is found that keeping a good balance between the interface resistance and channel resistance is mandatory for the observation of the two-terminal magnetoresistance. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel with an in-plane spin polarization. The long spin diffusion length (approximately ∼235 nm) could open a new avenue for spintronic applications using multilayer transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...