Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(1): 408-415, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458492

RESUMO

Green diesel is one of the alternative energy sources, which is found to be a second-generation biofuel. Green diesel has a similar molecular structure to petroleum diesel but has better diesel properties, sustainability, and environmental benignity. In this study, green diesel was synthesized from waste cooking oil via a deoxygenation reaction process and blended with petroleum diesel to assess the rate of greenhouse gas emissions. The fuel properties of the formed G100 (pure green diesel) were investigated, and the performance of G5 and G20 (a mixture of 5 and 20% green diesel in petroleum diesel) was tested for combustion in an oil burner. The overall test showed that the combustion of the blends of green diesel produced lower CO2 and SO2 emissions than that of petroleum diesel as a result of the rich oxygen-free fuel content. The obtained fuel properties of pure green diesel and blended green diesel are in compliance with ASTM D6751, ASTM D240-17, and EN 14214 standards. Based on these findings, it is shown that blended green diesel is a clean fuel for the environment and a promising alternative fuel for internal combustion engines.

2.
Sci Rep ; 9(1): 16358, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705011

RESUMO

A γ-NA5 catalyst in the form of pellet was first to be reported and was pioneering in gasification to accelerate the production of syngas through biomass (palm empty fruit brunch) conversion. The synthesised γ-NA5 pellet possesses a high surface area of 212.32 m2 g-1, which renders more active sites for hydrocarbon cracking, subsequently leading to high H2 production (0.0716 m3 kg-1). Additionally, the pellet exhibits remarkable reversibility and reusability with 91% H2 production efficiency being retained after five consecutive gasification cycles. Distinctively, the feature of the synthesised γ-NA5 pellet from the conventional powder-like catalyst is that it eases the separation of the used catalyst from the biomass ash, and subsequently facilitates regeneration solely by calcination process. The loading of 20 wt.% optimised amount of catalyst itself has successfully shorten the completion of gasification process up to 135 min, which is highly feasible for a large scale industrial usage after considering the cost of the catalyst, facile preparation method, and catalyst's effectiveness towards gasification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...