Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445055

RESUMO

BACKGROUND: We previously reported that severe COVID-19 patients had higher chances of survival and a reduced risk of developing respiratory failure when administered with the probiotic formulation SLAB51. This study aimed to investigate further bacteriotherapy mechanisms and how early they are activated. METHODS: We performed an analysis on the blood oxygenation parameters collected in sixty-nine severe COVID-19 patients requiring non-invasive oxygen therapy and presenting a CT lung involvement ≥50%. Twenty-nine patients received low-molecular-weight heparin, azithromycin and Remdesivir. In addition, forty subjects received SLAB51. Blood gas analyses were performed before the beginning of treatments and at 24 h. RESULTS: The patients receiving only standard therapy needed significantly increased oxygen amounts during the 24 h observation period. Furthermore, they presented lower blood levels of pO2, O2Hb and SaO2 than the group also supplemented with oral bacteriotherapy. In vitro data suggest that SLAB51 can reduce nitric oxide synthesis in intestinal cells. CONCLUSIONS: SARS-CoV-2 infected patients may present lesions in the lungs compromising their gas exchange capability. The functionality of the organs essential for these patients' survival depends mainly on the levels of pO2, O2Hb and SaO2. SLAB51 contains enzymes that could reduce oxygen consumption in the intestine, making it available for the other organs.


Assuntos
COVID-19/terapia , Oxigênio/uso terapêutico , Probióticos/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/análogos & derivados , Alanina/uso terapêutico , Antivirais/uso terapêutico , Azitromicina/uso terapêutico , Gasometria , Linhagem Celular , Feminino , Heparina , Humanos , Hipóxia , Itália , Pulmão , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32984078

RESUMO

Allergic rhinitis (AR) and adenoid hypertrophy (AH) are, in children, the main cause of partial or complete upper airway obstruction and reduction in airflow. However, limited data exist about the impact of the increased resistance to airflow, on the nasal microbial composition of children with AR end AH. Allergic rhinitis (AR) as well as adenoid hypertrophy (AH), represent extremely common pathologies in this population. Their known inflammatory obstruction is amplified when both pathologies coexist. In our study, the microbiota of anterior nares of 75 pediatric subjects with AR, AH or both conditions, was explored by 16S rRNA-based metagenomic approach. Our data show for the first time, that in children, the inflammatory state is associated to similar changes in the microbiota composition of AR and AH subjects respect to the healthy condition. Together with such alterations, we observed a reduced variability in the between-subject biodiversity on the other hand, these same alterations resulted amplified by the nasal obstruction that could constitute a secondary risk factor for dysbiosis. Significant differences in the relative abundance of specific microbial groups were found between diseased phenotypes and the controls. Most of these taxa belonged to a stable and quantitatively dominating component of the nasal microbiota and showed marked potentials in discriminating the controls from diseased subjects. A pauperization of the nasal microbial network was observed in diseased status in respect to the number of involved taxa and connectivity. Finally, while stable co-occurrence relationships were observed within both control- and diseases-associated microbial groups, only negative correlations were present between them, suggesting that microbial subgroups potentially act as maintainer of the eubiosis state in the nasal ecosystem. In the nasal ecosystem, inflammation-associated shifts seem to impact the more intimate component of the microbiota rather than representing the mere loss of microbial diversity. The discriminatory potential showed by differentially abundant taxa provide a starting point for future research with the potential to improve patient outcomes. Overall, our results underline the association of AH and AR with the impairment of the microbial interplay leading to unbalanced ecosystems.


Assuntos
Tonsila Faríngea , Microbiota , Rinite Alérgica , Criança , Disbiose , Humanos , Hipertrofia , Inflamação , Metagenômica , RNA Ribossômico 16S/genética
4.
Front Med (Lausanne) ; 7: 389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733907

RESUMO

Background: Gastrointestinal disorders are frequent in COVID-19 and SARS-CoV-2 has been hypothesized to impact on host microbial flora and gut inflammation, infecting intestinal epithelial cells. Since there are currently no coded therapies or guidelines for treatment of COVID-19, this study aimed to evaluate the possible role of a specific oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Methods: We provide a report of 70 patients positive for COVID-19, hospitalized between March 9th and April 4th, 2020. All the patients had fever, required non-invasive oxygen therapy and presented a CT lung involvement on imaging more than 50%. Forty-two patients received hydroxychloroquine, antibiotics, and tocilizumab, alone or in combination. A second group of 28 subjects received the same therapy added with oral bacteriotherapy, using a multistrain formulation. Results: The two cohorts of patients were comparable for age, sex, laboratory values, concomitant pathologies, and the modality of oxygen support. Within 72 h, nearly all patients treated with bacteriotherapy showed remission of diarrhea and other symptoms as compared to less than half of the not supplemented group. The estimated risk of developing respiratory failure was eight-fold lower in patients receiving oral bacteriotherapy. Both the prevalence of patients transferred to ICU and mortality were higher among the patients not treated with oral bacteriotherapy. Conclusions: A specific bacterial formulation showed a significant ameliorating impact on the clinical conditions of patients positive for SARS-CoV-2 infection. These results also stress the importance of the gut-lung axis in controlling the COVID-19 disease.

5.
Nutrients ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731403

RESUMO

The gut microbiota is a complex microbial ecosystem that coexists with the human organism in the intestinal tract. The members of this ecosystem live together in a balance between them and the host, contributing to its healthy state. Stress, aging, and antibiotic therapies are the principal factors affecting the gut microbiota composition, breaking the mutualistic relationship among microbes and resulting in the overgrowth of potential pathogens. This condition, called dysbiosis, has been linked to several chronic pathologies. In this review, we propose the use of the predator Bdellovibrio bacteriovorus as a possible probiotic to prevent or counteract dysbiotic outcomes and look at the findings of previous research.


Assuntos
Bdellovibrio bacteriovorus , Disbiose/microbiologia , Disbiose/terapia , Microbioma Gastrointestinal , Probióticos/uso terapêutico , Ecossistema , Trato Gastrointestinal/microbiologia , Humanos , Simbiose
6.
Ital J Pediatr ; 46(1): 93, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32635938

RESUMO

BACKGROUND: Allergic rhinitis (AR) and adenoidal hypertrophy (AH) are the most frequent causative disorders of nasal obstruction in children, leading to recurrent respiratory infections. Both nasal cavities are colonized by a stable microbial community susceptible to environmental changes and Staphylococcus aureus seems to play the major role. Furthermore, nasal microbiota holds a large number and variety of viruses with upper respiratory tract infections. This local microbiota deserves attention because its modification could induce a virtuous cross-talking with the immune system, with a better clearance of pathogens. Although AR and AH present a different etiopathogenesis, they have in common a minimal chronic inflammation surrounding nasal obstruction; hence it would be challenging to evaluate the effect of an immunomodulator on this minimal chronic inflammation with possible clinical and microbiological effects. The aim of this study is therefore to evaluate the efficacy of an immunomoldulator (Pidotimod) on nasal obstruction in children with AR and/or AH and whether its action involves a variation of nasal microbiota. METHODS: We enrolled 76 children: those with allergic rhinitis (AR) sensitized to dust mites entered the AR group, those with adenoidal hypertrophy (AH) the AH group, those with both conditions the AR/AH group and those without AR ± AH as controls (CTRL). At the first visit they performed: skin prick tests, nasal fiberoptic endoscopy, anterior rhinomanometry, nasal swabs. Children with. AR ± AH started treatment with Pidotimod. After 1 month they were re-evaluated performing the same procedures. The primary outcome was the evaluation of nasal obstruction after treatment and the secondary outcome was the improvement of symptoms and the changes in nasal microflora. RESULTS: All patients improved their mean nasal flow (mNF) in respect to the baseline. In AR children mNF reached that one of CTRL. In AH children±AR the mNF was lower in respect to CTRL and AR group. We did not find any differences among all the groups at the two different time points in nasal microflora. CONCLUSIONS: Pidotimod is able to give an improvement in nasal obstruction, especially in AR children but this effect seems to be not mediated by changes in nasal microbiota.


Assuntos
Tonsila Faríngea/patologia , Fatores Imunológicos/uso terapêutico , Obstrução Nasal/tratamento farmacológico , Ácido Pirrolidonocarboxílico/análogos & derivados , Rinite Alérgica/tratamento farmacológico , Tiazolidinas/uso terapêutico , Fatores Etários , Criança , Feminino , Humanos , Hipertrofia , Itália , Masculino , Obstrução Nasal/etiologia , Ácido Pirrolidonocarboxílico/uso terapêutico , Rinite Alérgica/complicações , Resultado do Tratamento
7.
Res Vet Sci ; 132: 150-155, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585472

RESUMO

Multiple antibiotic-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) strains represent a serious health care problem both for poultry and humans. Recently isolates with combined resistance to both antibiotics and heavy metals have been increased worldwide, with growing concern for possible co-selection of antimicrobial resistant genes. In the present study we characterized, at a phenotypic and genetic level, 80 E. coli isolates: forty independent isolates were collected from manure samples of healthy chickens and 40 from independent human extra-intestinal infections (ExPEC strains). The results obtained indicated that i) compared to chicken, human isolates presented a broader spectrum of antibiotic resistance and virulence potentials; ii) although at a lower extent, ExPEC-associated virulence genes were also present in chicken isolates, suggesting they may be potentially pathogens; iii) that arsenic (As) and zinc (Zn) tolerance genetic determinants were significantly more prevalent among chicken and human isolates respectively, while those responsible for tolerance to cadmium (Cd), silver (Ag) and copper (Cu) were equally distributed among the two groups of strains; iv) a very strong correlation was found between chicken gentamicin (GM) resistance and cadmium (Cd) tolerance. Elucidating the role of heavy metals in the selection and spread of highly pathogenic E. coli strains (co-selection) is of primary importance to lower the potential risk of infections in poultry and humans. The control of bacterial zoonotic agents, that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations, could be of relevant interest.


Assuntos
Galinhas , Farmacorresistência Bacteriana/genética , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Marcadores Genéticos , Humanos , Metais Pesados/farmacologia , Filogenia , Doenças das Aves Domésticas/genética , Virulência
8.
Nutrients ; 12(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521760

RESUMO

The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.


Assuntos
Infecções por Coronavirus/dietoterapia , Infecções por Coronavirus/prevenção & controle , Dieta , Suplementos Nutricionais , Pandemias/prevenção & controle , Pneumonia Viral/dietoterapia , Pneumonia Viral/prevenção & controle , Probióticos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2 , Vitamina D/uso terapêutico
9.
Microorganisms ; 8(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414211

RESUMO

Respiratory Syncytial Virus (RSV) is the leading cause of bronchiolitis, and the severity may be influenced by the bacterial ecosystem. Our aim was to analyze the nasal microbiota from 48 infants affected by bronchiolitis from RSV virus and 28 infants with bronchiolitis but negative for the virus. Results showed a significantly lower biodiversity in the RSV-positive group with respect to the RSV-negative group, a specific microbial profile associated with the RSV-positive group different from that observed in the negative group, and significant modifications in the relative abundance of taxa in the RSV-positive group, as well as in the RSV-A group, with respect to the negative group. Furthermore, microbial network analyses evidenced, in all studied groups, the presence of two predominant sub-networks characterized by peculiar inter- and intra-group correlation patterns as well as a general loss of connectivity among microbes in the RSV-positive group, particularly in the RSV-A group. Our results indicated that infants with more severe bronchiolitis disease, caused by RSV-A infection, present significant perturbations of both the nasal microbiota structure and the microbial relationships. Patients with a milder bronchiolitis course (RSV-B-infected and patients who have cleared the virus) presented less severe alterations.

10.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726759

RESUMO

LF82, a prototype of adherent-invasive E. coli (AIEC), is able to adhere to, invade, survive and replicate into intestinal epithelial cells. LF82 is able to enhance either its adhesion and invasion by up-regulating carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM-6), the main cell surface molecule for bacterial adhesion, and its intracellular survival by inducing host DNA damage, thus blocking the cellular cycle. Lactoferrin (Lf) is a multifunctional cationic glycoprotein of natural immunity, exerting an anti-invasive activity against LF82 when added to Caco-2 cells at the moment of infection. Here, the infection of 12 h Lf pre-treated Caco-2 cells was carried out at a time of 0 or 3 or 10 h after Lf removal from culture medium. The effect of Lf pre-treatment on LF82 invasiveness, survival, cell DNA damage, CEACAM-6 expression, apoptosis induction, as well as on Lf subcellular localization, has been evaluated. Lf, even if removed from culture medium, reduced LF82 invasion and survival as well as bacteria-induced DNA damage in Caco-2 cells independently from induction of apoptosis, modulation of CEACAM-6 expression and Lf sub-cellular localization. At our knowledge, this is the first study showing that the sole Lf pre-treatment can activate protective intracellular pathways, reducing LF82 invasiveness, intracellular survival and cell-DNA damages.


Assuntos
Diferenciação Celular , Dano ao DNA , Enterócitos , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Infecções por Escherichia coli , Lactoferrina/farmacologia , Animais , Células CACO-2 , Bovinos , Enterócitos/metabolismo , Enterócitos/microbiologia , Enterócitos/patologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Humanos
11.
Allergy Asthma Proc ; 40(3): e8-e13, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31018900

RESUMO

Background: Bronchial asthma and rhinitis are among the most common diseases in children and frequently coexist in the patient. The primary aim of anti-asthmatic therapy is disease control. Several questionnaires can be used in pediatrics to assess asthma control and the Children Asthma Control Test (C-ACT) is one of the most used. Objective: To evaluate the percentage of asthma control in our cohort of patients with asthma and correlate C-ACT with bronchial and nasal function tests. Methods: We enrolled all children ages between 5 and 11 years with persistent bronchial asthma, sensitized to dust mite, and who presented to our center during an 8-month period. All the children had skin-prick tests, spirometry, measurement of fractional exhaled nitric oxide levels, active anterior rhinomanometry, measurement of nasal nitric oxide level, and C-ACT. Results: Sixty patients were enrolled; 80% of these children had rhinitis. According to C-ACT, 31% of our patients had uncontrolled asthma. Nasal flow values were significantly lower in patients with uncontrolled asthma, who also had higher nasal inflammation. Conclusion: The disease is not controlled in a significant percentage of children with asthma. In patients with uncontrolled asthma, worse nasal flow was detected. These results supported the relationship between upper and lower airways, and highlighted the importance of performing nasal function tests in all patients with asthma, which could be useful to determine whether better control of asthma symptoms can be reached through an appropriate treatment of rhinitis.


Assuntos
Asma/complicações , Asma/prevenção & controle , Rinite/complicações , Asma/diagnóstico , Asma/terapia , Humanos , Rinite/diagnóstico
12.
Microbiologyopen ; 8(6): e00756, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30381890

RESUMO

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Although a number of bacteria can cause UTIs, most cases are due to infection by uropathogenic Escherichia coli (UPEC). UPEC are a genetically heterogeneous group that exhibit several virulence factors associated with colonization and persistence of bacteria in the urinary tract. Caenorhabditis elegans is a tiny, free-living nematode found worldwide. Because many biological pathways are conserved in C. elegans and humans, the nematode has been increasingly used as a model organism to study virulence mechanisms of microbial infections and innate immunity. The virulence of UPEC strains, characterized for antimicrobial resistance, pathogenicity-related genes associated with virulence and phylogenetic group belonging was evaluated by measuring the survival of C. elegans exposed to pure cultures of these strains. Our results showed that urinary strains can kill the nematode and that the clinical isolate ECP110 was able to efficiently colonize the gut and to inhibit the host oxidative response to infection. Our data support that C. elegans, a free-living nematode found worldwide, could serve as an in vivo model to distinguish, among uropathogenic E. coli, different virulence behavior.


Assuntos
Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Animais , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Filogenia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/fisiologia , Virulência
13.
Microb Pathog ; 126: 323-331, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30458252

RESUMO

Many essential oils (EOs) are screened as potential sources of antimicrobial compounds. EOs from the genus Satureja have recognized biological properties, including analgesic, anti-inflammatory, immunomodulatory, anticancer, and antimicrobial activity. This study aimed to obtain a metabolite profile of commercial essential oil of S. montana L. (SEO) and to evaluate its antimicrobial properties, both alone and combined with gentamicin towards Gram-negative and Gram-positive bacterial strains. Untargeted analyses based on direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and on GC-MS have provided a high metabolome coverage, allowing to identify carvacrol, cymene and thymol as the major components of commercial SEO. SEO exerted an antimicrobial activity and induced a synergistic interaction with gentamicin against both reference and clinical bacterial strains. A significant reduction of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes biofilm formation was induced by SEO. As a result of SEO treatment, clear morphological bacterial alterations were visualized by scanning electron microscopy: L. monocytogenes and S. aureus showed malformed cell surface or broken cells with pores formation, whereas E. coli displayed collapsed cell surface. These results encourage further studies about bactericidal and antibiotic synergistic effect of SEO for combined therapy in clinical setting as well as in agricultural systems.


Assuntos
Anti-Infecciosos/farmacologia , Gentamicinas/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos Vegetais/farmacologia , Satureja/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cimenos , Combinação de Medicamentos , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos Vegetais/química , Timol/isolamento & purificação , Timol/farmacologia
14.
New Microbiol ; 41(3): 238-241, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29874385

RESUMO

Capsular contracture is one of the most common complications of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial although the surface texture of the breast implant, the anatomical position of the prosthesis and the presence of bacterial biofilm could be considered trigger factors. In fact, all medical implants are susceptible to bacterial colonization and biofilm formation. The present study demonstrated the presence of microbial biofilm constituted by cocci in a breast implant obtained from a patient with Baker grade II capsular contracture. This suggests that subclinical infection can be present and involved in low grade capsular contracture.


Assuntos
Infecções Bacterianas/microbiologia , Biofilmes , Implantes de Mama/efeitos adversos , Adulto , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Infecções Bacterianas/patologia , Feminino , Humanos , Testes de Sensibilidade Microbiana
15.
Microb Pathog ; 112: 274-278, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28987619

RESUMO

Some Escherichia coli strains of phylogroup B2 harbor a (pks) pathogenicity island that encodes a polyketide-peptide genotoxin called colibactin. It causes DNA double-strand breaks and megalocytosis in eukaryotic cells and it may contribute to cancer development. Study of bacterial community that colonizes the adenomatous polyp lesion, defined as precancerous lesions, could be helpful to assess if such pathogenic bacteria possess a role in the polyp progression to cancer. In this cross-sectional study, a total of 1500 E. coli isolates were obtained from biopsies of patients presenting adenomatous colon polyps, the normal tissues adjacent to the polyp lesion and patients presenting normal mucosa. pks island frequency, phylogenetic grouping, fingerprint genotyping, and virulence gene features of pks positive (pks+) E. coli isolates were performed. We found pks+E. coli strongly colonize two patients presenting polypoid lesions and none were identified in patients presenting normal mucosa. Predominant phylogroups among pks+E. coli isolates were B2, followed by D. Clustering based on fragment profiles of composite analysis, typed the pks+ isolates into 5 major clusters (I-V) and 17 sub-clusters, demonstrating a high level of genetic diversity among them. The most prevalent virulence genes were fimH and fyuA (100%), followed by vat (92%), hra and papA (69%), ibeA (28%), and hlyA (25%). Our results revealed that pks+E. coli can colonize the precancerous lesions, with a high distribution in both the polyp lesions and in normal tissues adjacent to the lesion. The high differences in fingerprinting patterns obtained indicate that pks+E. coli strains were genetically diverse, possibly allowing them to more easily adapt to environmental variations.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/classificação , Escherichia coli/genética , Variação Genética , Pólipos Intestinais/microbiologia , Filogenia , Fatores de Virulência/genética , Adesinas de Escherichia coli/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Biópsia , Estudos Transversais , DNA Bacteriano/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Fímbrias/genética , Ilhas Genômicas , Genótipo , Proteínas Hemolisinas/genética , Humanos , Itália , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Peptídeos/genética , Policetídeos , Receptores de Superfície Celular/genética , Virulência
16.
Nat Prod Commun ; 12(4): 623-626, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30520610

RESUMO

Coriander (Coriandruim sativum L., Apiaceae) is known for its antimicrobial activity and the aim of this study was to investigate the effect of its essential oil (CDO) against multidrug resistant uropathogenic Escherichia coli (UPEC). CDO was able to inhibit the growth of UPEC strains and propidium iodide uptake, - and electron microscopy examination suggested that bacterial structural modifications occurred. The presence of CDO reduced the MIC of gentamicin. E.coli adhesion efficiency on cell monolayers and abiotic surfaces was not affected by subMIC oil concentrations; furthermore, CDO showed cytotoxic activity towards the HEp-2 tumor cell line. These findings contribute to the knowledge about essential oils as sources of potential antimicrobial agents against uropathogenic E. coli and encourage further investigations.


Assuntos
Antibacterianos/farmacologia , Coriandrum/química , Óleos Voláteis/farmacologia , Óleos Vegetais/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Escherichia coli Uropatogênica/crescimento & desenvolvimento
18.
Infect Immun ; 84(11): 3105-3113, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27600504

RESUMO

Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract.


Assuntos
Aderência Bacteriana/fisiologia , Células Epiteliais/microbiologia , Escherichia coli/patogenicidade , Próstata/citologia , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Doença de Crohn/microbiologia , Células Epiteliais/metabolismo , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fenótipo , Filogenia , Virulência , Fatores de Virulência/metabolismo
19.
New Microbiol ; 39(2): 146-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27196555

RESUMO

RWPE-1 normal prostate cells were tested as an experimental model for adhesion/invasion assays by genotypically and phenotypically characterized community uropathogenic strains of Escherichia coli (UPEC), a frequent cause of urinary tract infections (UTIs) and significant etiologic agent also in bacterial prostatitis. Adhesive ability and strong biofilm production was significantly associated with the bacterial invasive phenotype. Invasive strains derived mainly from male and pediatric patients. This study suggests that such a cell model could usefully integrate other available methods of urovirulence analysis, to deepen knowledge on the bacterial interaction with host cells.


Assuntos
Infecções por Escherichia coli/microbiologia , Próstata/citologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/fisiologia , Adolescente , Adulto , Aderência Bacteriana/fisiologia , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escherichia coli Uropatogênica/classificação , Adulto Jovem
20.
Biochem Biophys Rep ; 8: 168-173, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955953

RESUMO

Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188EVQ190 are likely essential for PhoN2-OmpA interaction. The 188EVQ190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...