Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723270

RESUMO

Gigantopithecus blacki was a giant hominid that inhabited densely forested environments of Southeast Asia during the Pleistocene epoch1. Its evolutionary relationships to other great ape species, and the divergence of these species during the Middle and Late Miocene epoch (16-5.3 million years ago), remain unclear2,3. Hypotheses regarding the relationships between Gigantopithecus and extinct and extant hominids are wide ranging but difficult to substantiate because of its highly derived dentognathic morphology, the absence of cranial and post-cranial remains1,3-6, and the lack of independent molecular validation. We retrieved dental enamel proteome sequences from a 1.9-million-year-old G. blacki molar found in Chuifeng Cave, China7,8. The thermal age of these protein sequences is approximately five times greater than that of any previously published mammalian proteome or genome. We demonstrate that Gigantopithecus is a sister clade to orangutans (genus Pongo) with a common ancestor about 12-10 million years ago, implying that the divergence of Gigantopithecus from Pongo forms part of the Miocene radiation of great apes. In addition, we hypothesize that the expression of alpha-2-HS-glycoprotein, which has not been previously observed in enamel proteomes, had a role in the biomineralization of the thick enamel crowns that characterize the large molars in Gigantopithecus9,10. The survival of an Early Pleistocene dental enamel proteome in the subtropics further expands the scope of palaeoproteomic analysis into geographical areas and time periods previously considered incompatible with the preservation of substantial amounts of genetic information.

3.
Mol Biol Evol ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31697387

RESUMO

The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonisation of the Americas. In addition, we found that some known variants for resistance to anti-malarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.

4.
PLoS Genet ; 15(11): e1008485, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31765391

RESUMO

Chimpanzees, humans' closest relatives, are in danger of extinction. Aside from direct human impacts such as hunting and habitat destruction, a key threat is transmissible disease. As humans continue to encroach upon their habitats, which shrink in size and grow in density, the risk of inter-population and cross-species viral transmission increases, a point dramatically made in the reverse with the global HIV/AIDS pandemic. Inhabiting central Africa, the four subspecies of chimpanzees differ in demographic history and geographical range, and are likely differentially adapted to their particular local environments. To quantitatively explore s genetic adaptation, we investigated the genic enrichment for SNPs highly differentiated between chimpanzee subspecies. Previous analyses of such patterns in human populations exhibited limited evidence of adaptation. In contrast, chimpanzees show evidence of recent positive selection, with differences among subspecies. Specifically, we observe strong evidence of recent selection in eastern chimpanzees, with highly differentiated SNPs being uniquely enriched in genic sites in a way that is expected under recent adaptation but not under neutral evolution or background selection. These sites are enriched for genes involved in immune responses to pathogens, and for genes inferred to differentiate the immune response to infection by simian immunodeficiency virus (SIV) in natural vs. non-natural host species. Conversely, central chimpanzees exhibit an enrichment of signatures of positive selection only at cytokine receptors, due to selective sweeps in CCR3, CCR9 and CXCR6 -paralogs of CCR5 and CXCR4, the two major receptors utilized by HIV to enter human cells. Thus, our results suggest that positive selection has contributed to the genetic and phenotypic differentiation of chimpanzee subspecies, and that viruses likely play a predominate role in this differentiation, with SIV being a likely selective agent. Interestingly, our results suggest that SIV has elicited distinctive adaptive responses in these two chimpanzee subspecies.

5.
Bioessays ; 41(12): e1900123, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31664727

RESUMO

Admixture, the genetic exchange between differentiated populations appears to be common in the history of species, but has not yet been comparatively studied across mammals. This limits the understanding of its mechanisms and potential role in mammalian evolution. The authors want to summarize the current knowledge on admixture in non-human primates, and suggest that it is important to establish a comparative framework for this phenomenon in humans. Genetic observations in domesticated mammals and their wild counterparts are discussed, and a brief global overview on other clades is presented. Based on this, some of the consequences of gene flow, including incompatibilities and their genomic footprint, as well as adaptive introgression are discussed, and suggestions for a functional genomics approach are made. It is proposed that the field is moving beyond descriptive observations in single species, to a comprehensive analysis of admixture and its impact. Admixture is becoming an integral part of mammalian evolution.

6.
Cell ; 179(1): 180-192.e10, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539495

RESUMO

Denisovans are an extinct group of humans whose morphology remains unknown. Here, we present a method for reconstructing skeletal morphology using DNA methylation patterns. Our method is based on linking unidirectional methylation changes to loss-of-function phenotypes. We tested performance by reconstructing Neanderthal and chimpanzee skeletal morphologies and obtained >85% precision in identifying divergent traits. We then applied this method to the Denisovan and offer a putative morphological profile. We suggest that Denisovans likely shared with Neanderthals traits such as an elongated face and a wide pelvis. We also identify Denisovan-derived changes, such as an increased dental arch and lateral cranial expansion. Our predictions match the only morphologically informative Denisovan bone to date, as well as the Xuchang skull, which was suggested by some to be a Denisovan. We conclude that DNA methylation can be used to reconstruct anatomical features, including some that do not survive in the fossil record.

7.
Genome Biol Evol ; 11(9): 2678-2690, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400206

RESUMO

Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.

8.
Nat Ecol Evol ; 3(6): 988, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31089261

RESUMO

In the version of this article originally published, a funding acknowledgement was missing for Tomas Maques-Bonet. The original funding statement was: "T.M.-B. was supported by MINECO BFU2014-55090-P (FEDER), a U01 MH106874 grant, the Howard Hughes International Early Career programme, Obra Social 'La Caixa' and Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya." It has been updated to: "T.M.-B. was supported by BFU2017-86471-P (MINECO/FEDER, UE), a U01 MH106874 grant, the Howard Hughes International Early Career programme, Obra Social 'La Caixa' and Secretaria d'Universitats i Recerca and CERCA Programme del Departament d'Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880)." The error has been corrected in the HTML and PDF versions of this article.

9.
Nat Ecol Evol ; 3(6): 957-965, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036897

RESUMO

Admixture is a recurrent phenomenon in humans and other great ape populations. Genetic information from extinct hominins allows us to study historical interactions with modern humans and discover adaptive functions of gene flow. Here, we investigate whole genomes from bonobo and chimpanzee populations for signatures of gene flow from unknown archaic populations, finding evidence for an ancient admixture event between bonobos and a divergent lineage. This result reveals a complex population history in our closest living relatives, probably several hundred thousand years ago. We reconstruct up to 4.8% of the genome of this 'ghost' ape, which represents genomic data of an extinct great ape population. Genes contained in archaic fragments might confer functional consequences for the immunity, behaviour and physiology of bonobos. Finally, comparing the landscapes of introgressed regions in humans and bonobos, we find that a recurrent depletion of introgression is rare, suggesting that genomic incompatibilities arose seldom in these lineages.


Assuntos
Hominidae , Pan paniscus , Animais , Fluxo Gênico , Genoma , Humanos , Pan troglodytes
10.
Mol Biol Evol ; 36(8): 1746-1763, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070747

RESUMO

Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.

11.
Nat Ecol Evol ; 3(5): 859, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988499

RESUMO

In the version of this article initially published, Tomas Marques-Bonet was missing the following affiliations: Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; and Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain. The affiliations have been added in the PDF and HTML versions of the article.

12.
Genome Biol ; 20(1): 77, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023378

RESUMO

BACKGROUND: Population demography and gene flow among African groups, as well as the putative archaic introgression of ancient hominins, have been poorly explored at the genome level. RESULTS: Here, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-gatherer groups being more genetically differentiated and having larger effective population sizes throughout most modern-human history. Admixture signals are found between neighbor populations from both hunter-gatherer and agriculturalists groups, whereas North African individuals are closely related to Eurasian populations. Regarding archaic gene flow, we test six complex demographic models that consider recent admixture as well as archaic introgression. We identify the fingerprint of an archaic introgression event in the sub-Saharan populations included in the models (~ 4.0% in Khoisan, ~ 4.3% in Mbuti Pygmies, and ~ 5.8% in Mandenka) from an early divergent and currently extinct ghost modern human lineage. CONCLUSION: The present study represents an in-depth genomic analysis of a Pan African set of individuals, which emphasizes their complex relationships and demographic history at population level.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Fluxo Gênico , Migração Humana , África , Variação Genética , Humanos , Filogeografia , Densidade Demográfica , Sequenciamento Completo do Genoma
13.
Genome Biol Evol ; 11(4): 1178-1191, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30847478

RESUMO

Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the closest living relatives of humans, but the two species show distinct behavioral and physiological differences, particularly regarding female reproduction. Despite their recent rapid decline, the demographic histories of the two species have been different during the past 1-2 Myr, likely having an impact on their genomic diversity. Here, we analyze the inferred functional consequences of genetic variation across 69 individuals, making use of the most complete data set of genomes in the Pan clade to date. We test to which extent the demographic history influences the efficacy of purifying selection in these species. We find that small historical effective population sizes (Ne) correlate not only with low levels of genetic diversity but also with a larger number of deleterious alleles in homozygosity and an increased proportion of deleterious changes at low frequencies. To investigate the putative genetic basis for phenotypic differences between chimpanzees and bonobos, we exploit the catalog of putatively deleterious protein-coding changes in each lineage. We show that bonobo-specific nonsynonymous changes are enriched in genes related to age at menarche in humans, suggesting that the prominent physiological differences in the female reproductive system between chimpanzees and bonobos might be explained, in part, by putatively adaptive changes on the bonobo lineage.


Assuntos
Variação Genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Estudo de Associação Genômica Ampla
14.
Sci Adv ; 5(1): eaau6947, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30854422

RESUMO

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.

15.
Nat Ecol Evol ; 3(2): 286-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664699

RESUMO

The human mutation rate per generation estimated from trio sequencing has revealed an almost linear relationship with the age of the father and the age of the mother, with fathers contributing about three times as many mutations per year as mothers. The yearly trio-based mutation rate estimate of around 0.43 × 10-9 is markedly lower than previous indirect estimates of about 1 × 10-9 per year from phylogenetic comparisons of the great apes calibrated by fossil evidence. This suggests either a slowdown in the accumulation of mutations per year in the human lineage over the past 10 million years or an inaccurate interpretation of the fossil record. Here we inferred de novo mutations in chimpanzee, gorilla, and orangutan parent-offspring trios. Extrapolating the relationship between the mutation rate and the age of parents from humans to these other great apes, we estimated that each species has higher mutation rates per year by factors of 1.50 ± 0.10, 1.51 ± 0.23, and 1.42 ± 0.22 for chimpanzee, gorilla, and orangutan, respectively, and by a factor of 1.48 ± 0.08 for the three species combined. These estimates suggest an appreciable slowdown in the yearly mutation rate in the human lineage that is likely to be recent as genome comparisons almost adhere to a molecular clock. If the nonhuman rates rather than the human rate are extrapolated over the phylogeny of the great apes, we estimate divergence and speciation times that are much more in line with the fossil record and the biogeography.


Assuntos
Evolução Molecular , Variação Genética , Hominidae/genética , Mutação , Animais , Evolução Biológica , Fósseis , Filogenia
16.
Nat Commun ; 10(1): 4, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602775

RESUMO

Mammalian Y chromosomes are often neglected from genomic analysis. Due to their inherent assembly difficulties, high repeat content, and large ampliconic regions, only a handful of species have their Y chromosome properly characterized. To date, just a single human reference quality Y chromosome, of European ancestry, is available due to a lack of accessible methodology. To facilitate the assembly of such complicated genomic territory, we developed a novel strategy to sequence native, unamplified flow sorted DNA on a MinION nanopore sequencing device. Our approach yields a highly continuous assembly of the first human Y chromosome of African origin. It constitutes a significant improvement over comparable previous methods, increasing continuity by more than 800%. Sequencing native DNA also allows to take advantage of the nanopore signal data to detect epigenetic modifications in situ. This approach is in theory generalizable to any species simplifying the assembly of extremely large and repetitive genomes.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Cromossomos Humanos Y , Ilhas de CpG , Metilação de DNA , Humanos , Cariotipagem , Anotação de Sequência Molecular , Análise de Sequência de DNA
17.
Curr Biol ; 29(1): 165-170.e6, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595519

RESUMO

Many endangered species have experienced severe population declines within the last centuries [1, 2]. However, despite concerns about negative fitness effects resulting from increased genetic drift and inbreeding, there is a lack of empirical data on genomic changes in conjunction with such declines [3-7]. Here, we use whole genomes recovered from century-old historical museum specimens to quantify the genomic consequences of small population size in the critically endangered Grauer's and endangered mountain gorillas. We find a reduction of genetic diversity and increase in inbreeding and genetic load in the Grauer's gorilla, which experienced severe population declines in recent decades. In contrast, the small but relatively stable mountain gorilla population has experienced little genomic change during the last century. These results suggest that species histories as well as the rate of demographic change may influence how population declines affect genome diversity.

18.
Mol Ecol Resour ; 19(3): 609-622, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30637963

RESUMO

Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.


Assuntos
Animais Selvagens , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização de Ácido Nucleico/métodos , Animais , DNA/química , DNA/genética , DNA/isolamento & purificação , Fezes/química , Pan troglodytes
19.
Curr Biol ; 29(2): 340-349.e7, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639104

RESUMO

Human-induced environmental change and habitat fragmentation pose major threats to biodiversity and require active conservation efforts to mitigate their consequences. Genetic rescue through translocation and the introduction of variation into imperiled populations has been argued as a powerful means to preserve, or even increase, the genetic diversity and evolutionary potential of endangered species [1-4]. However, factors such as outbreeding depression [5, 6] and a reduction in available genetic diversity render the success of such approaches uncertain. An improved evaluation of the consequence of genetic restoration requires knowledge of temporal changes to genetic diversity before and after the advent of management programs. To provide such information, a growing number of studies have included small numbers of genomic loci extracted from historic and even ancient specimens [7, 8]. We extend this approach to its natural conclusion, by characterizing the complete genomic sequences of modern and historic population samples of the crested ibis (Nipponia nippon), an endangered bird that is perhaps the most successful example of how conservation effort has brought a species back from the brink of extinction. Though its once tiny population has today recovered to >2,000 individuals [9], this process was accompanied by almost half of ancestral loss of genetic variation and high deleterious mutation load. We furthermore show how genetic drift coupled to inbreeding following the population bottleneck has largely purged the ancient polymorphisms from the current population. In conclusion, we demonstrate the unique promise of exploiting genomic information held within museum samples for conservation and ecological research.

20.
Nat Ecol Evol ; 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510174

RESUMO

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA