Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Filtros adicionais











Intervalo de ano
1.
Proc Natl Acad Sci U S A ; 116(33): 16463-16472, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346092

RESUMO

Heterozygous in-frame mutations in coding regions of human STAT3 underlie the only known autosomal dominant form of hyper IgE syndrome (AD HIES). About 5% of familial cases remain unexplained. The mutant proteins are loss-of-function and dominant-negative when tested following overproduction in recipient cells. However, the production of mutant proteins has not been detected and quantified in the cells of heterozygous patients. We report a deep intronic heterozygous STAT3 mutation, c.1282-89C>T, in 7 relatives with AD HIES. This mutation creates a new exon in the STAT3 complementary DNA, which, when overexpressed, generates a mutant STAT3 protein (D427ins17) that is loss-of-function and dominant-negative in terms of tyrosine phosphorylation, DNA binding, and transcriptional activity. In immortalized B cells from these patients, the D427ins17 protein was 2 kDa larger and 4-fold less abundant than wild-type STAT3, on mass spectrometry. The patients' primary B and T lymphocytes responded poorly to STAT3-dependent cytokines. These findings are reminiscent of the impaired responses of leukocytes from other patients with AD HIES due to typical STAT3 coding mutations, providing further evidence for the dominance of the mutant intronic allele. These findings highlight the importance of sequencing STAT3 introns in patients with HIES without candidate variants in coding regions and essential splice sites. They also show that AD HIES-causing STAT3 mutant alleles can be dominant-negative even if the encoded protein is produced in significantly smaller amounts than wild-type STAT3.

2.
J Exp Med ; 216(9): 2057-2070, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31270247

RESUMO

Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.

3.
F1000Res ; 8: 284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231515

RESUMO

The human immune defense mechanisms and factors associated with good versus poor health outcomes following viral respiratory tract infections (VRTI), as well as correlates of protection following vaccination against respiratory viruses, remain incompletely understood. To shed further light into these mechanisms, a number of systems-scale studies have been conducted to measure transcriptional changes in blood leukocytes of either naturally or experimentally infected individuals, or in individual's post-vaccination. Here we are making available a public repository, for research investigators for interpretation, a collection of transcriptome datasets obtained from human whole blood and peripheral blood mononuclear cells (PBMC) to investigate the transcriptional responses following viral respiratory tract infection or vaccination against respiratory viruses. In total, Thirty one31 datasets, associated to viral respiratory tract infections and their related vaccination studies, were identified and retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom web application designed for interactive query and visualization of integrated large-scale data. Quality control checks, using relevant biological markers, were performed. Multiple sample groupings and rank lists were created to facilitate dataset query and interpretation. Via this interface, users can generate web links to customized graphical views, which may be subsequently inserted into manuscripts to report novel findings. The GXB tool enables browsing of a single gene across projects, providing new perspectives on the role of a given molecule across biological systems in the diagnostic and prognostic following VRTI but also in identifying new correlates of protection. This dataset collection is available at: http://vri1.gxbsidra.org/dm3/geneBrowser/list.

4.
Biochimie ; 159: 81-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578925

RESUMO

A dozen species of human and animal pathogens have been described to date in the Bordetella genus, with the majority being respiratory tract pathogens. Bordetella avium lipopolysaccharides have been shown to be important virulence factors for this bird pathogen. B. hinzii is closely related to the B. avium species, but has also been isolated from humans. B. trematum is associated to ear and blood infections in humans. Its lipid A structure, the biological active moiety of LPS, was found to be closely related to those of B. avium and B. hinzii. It is important to unveil the subtle structural modifications orchestrated during the LPS biosynthetic pathway to better understand host adaptation. The present data are also important in the context of deciphering the virulence pathways of this important genus containing the major pathogens B. pertussis and B. parapertussis, responsible for whooping cough. We recently reported the isolated lipid A structures of the three presented species, following the previously identified O-chain structures. In the present study, we provide details on the free and O-chain-linked core oligosaccharides which were required to characterize the complete LPS structures. Data are presented here in relation to relevant biosynthesis genes. The present characterization of the three species is well illustrated by Matrix Assisted Laser Desorption Mass Spectrometry experiments, and data were obtained mainly on native LPS molecules for the first time.


Assuntos
Bordetella , Loci Gênicos , Lipopolissacarídeos , Fatores de Virulência , Bordetella/química , Bordetella/genética , Bordetella/metabolismo , Humanos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Estrutura Molecular , Fatores de Virulência/biossíntese , Fatores de Virulência/química , Fatores de Virulência/genética
5.
Sci Immunol ; 3(30)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578352

RESUMO

Inherited IL-12Rß1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.


Assuntos
Interferon gama/imunologia , Interleucina-23/imunologia , Mutação de Sentido Incorreto/genética , TYK2 Quinase/genética , Tuberculose/imunologia , Células Cultivadas , Homozigoto , Humanos , Interleucina-23/deficiência , TYK2 Quinase/imunologia
6.
J Exp Med ; 215(10): 2567-2585, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143481

RESUMO

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.

7.
Sci Immunol ; 3(24)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907691

RESUMO

Heterozygosity for human signal transducer and activator of transcription 3 (STAT3) dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the STAT3 promoter. The patients' cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with STAT3 DN mutations, ZNF341-deficient patients lack T helper 17 (TH17) cells, have an excess of TH2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the STAT3 transcription-dependent autoinduction and sustained activity of STAT3.

8.
Elife ; 72018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29537367

RESUMO

Most humans are exposed to Tropheryma whipplei (Tw). Whipple's disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance.

9.
PLoS One ; 12(4): e0176152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437470

RESUMO

BACKGROUND: Monthly injections of palivizumab during the respiratory syncytial virus (RSV) season in at-risk infants reduces RSV-associated hospitalizations. However, the additive effect of naturally acquired immunity remains unclear. The objective of this study was to assess total neutralizing serum antibodies (NAb) against RSV in at-risk infants who had received an abbreviated course of palivizumab prophylaxis. METHODS: Serum samples were collected from infants enrolled in the RSV Immunoprophylaxis Program in British Columbia, Canada over 2 consecutive RSV seasons (2013 to 2015). Infants in this program had received an abbreviated course of palivizumab in accordance with the provincial guidelines. Data were compared to adults and infants less than 12 months of age who did not receive palivizumab. Anti-RSV NAb titers were measured using an RSV microneutralization assay. FINDINGS: Infants who received palivizumab had anti-RSV NAb titers at the end of the RSV season that persisted beyond what is expected from the pharmacokinetics of palivizumab alone. Moreover, 54% of the control infants who did not receive palivizumab and all tested adults had protective anti-RSV NAb titers. CONCLUSIONS: Based on our observations, we hypothesize that naturally acquired NAb provide additive protection, which may significantly reduce the need for additional doses of palivizumab in infants at risk of severe RSV infections.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antivirais/uso terapêutico , Palivizumab/uso terapêutico , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Esquema de Medicação , Feminino , Humanos , Lactente , Masculino , Palivizumab/administração & dosagem , Resultado do Tratamento
10.
Proc Natl Acad Sci U S A ; 114(4): E514-E523, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069966

RESUMO

Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1ß. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1ß. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.


Assuntos
Fibroblastos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/deficiência , Receptores Toll-Like/metabolismo , Deleção Cromossômica , Cromossomos Humanos X/genética , Humanos , Lactente , Quinases Associadas a Receptores de Interleucina-1/genética , Leucócitos/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética
11.
F1000Res ; 5: 414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347375

RESUMO

Compendia of large-scale datasets made available in public repositories provide an opportunity to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to research investigators for interpretation. Here we make available a collection of transcriptome datasets to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom web application called the Gene Expression Browser (GXB), which was designed for interactive query and visualization of integrated large-scale data. Quality control checks were performed. Multiple sample groupings and gene rank lists were created allowing users to reveal age-related differences in transcriptome profiles, changes in the gene expression of neonatal hematopoietic cells to a variety of immune stimulators and modulators, as well as during cell differentiation. Available demographic, clinical, and cell phenotypic information can be overlaid with the gene expression data and used to sort samples. Web links to customized graphical views can be generated and subsequently inserted in manuscripts to report novel findings. GXB also enables browsing of a single gene across projects, thereby providing new perspectives on age- and developmental stage-specific expression of a given gene across the human hematopoietic system. This dataset collection is available at: http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/list.

13.
J Allergy Clin Immunol ; 136(5): 1346-54.e1, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25819983

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes severe respiratory tract infections, which might have a role in the development of airway hyperreactivity. Mast cells are important effector cells in allergy, with sentinel cell roles in host defense. However, the role of mast cells in response to RSV infection is unknown. OBJECTIVE: Human mast cell responses to RSV were investigated with a view to better understanding the role of mast cells in RSV-induced disease. METHODS: Human cord blood-derived mast cells and the HMC-1 mast cell line were exposed to RSV or UV-inactivated RSV. Viral gene and protein expression were evaluated by using PCR and flow cytometry. The expression of interferon-stimulated genes and selected mediators were evaluated by using quantitative PCR and ELISA. RESULTS: Human mast cells expressed multiple RSV genes after exposure to RSV, and a small percentage of mast cells supported RSV antigen protein expression. RSV induced mast cells to upregulate production of chemokines, including CCL4, CCL5, and CXCL10, as well as type I interferons, and interferon-stimulated gene expression. However, production of the granulocyte chemoattractants CXCL8 and CCL11 was not induced. Antibody blockade of the type I interferon receptor on human cord blood-derived mast cells reduced the RSV-mediated induction of CXCL10 and CCL4 but not CCL5. Leukotriene C4 production by mast cells was not enhanced by exposure to RSV. CONCLUSION: Despite low levels of infection, human mast cells produce multiple chemokines in response to RSV through mechanisms that include responses to type I interferons. Such mast cell responses might enhance effector cell recruitment during RSV-induced disease.


Assuntos
Quimiocina CCL4/metabolismo , Quimiocina CXCL10/metabolismo , Interferon Tipo I/metabolismo , Mastócitos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Hiper-Reatividade Brônquica , Linhagem Celular , Sangue Fetal/citologia , Humanos , Mastócitos/virologia , Cultura Primária de Células
14.
PLoS One ; 9(6): e100269, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949794

RESUMO

The majority of cases of severe pediatric respiratory syncytial virus (RSV) infection occur in otherwise healthy infants who have no identifiable risk factors, suggesting that additional subclinical factors, such as population genetic variation, influence the course of RSV infection. The objective of this study was to test if common single nucleotide polymorphisms (SNPs) in genes encoding for immune signalling components of the RIG-I-like receptor (RLR) and IL-4-signalling pathways affect the outcome of RSV infection in early life. We genotyped 8 SNPs using allele-specific probes combined with real-time PCR. Each of the SNPs tested had previously been established to have a functional impact on immune responsiveness and two of the SNPs in the IL4 and IL4R genes had previously been associated with severe RSV bronchiolitis. Association with susceptibility to severe RSV infection was tested by statistically comparing genotype and allele frequencies in infants and young children hospitalized with severe RSV bronchiolitis (n = 140) with two control groups-children who tested positive for RSV but did not require hospitalization (n = 100), and a general population control group (n = 285). Our study was designed with sufficient power (>80%) to detect clinically-relevant associations with effect sizes ≥1.5. However, we detected no statistically significant differences in allele and genotype frequencies of the investigated SNPs between the inpatient and control groups. To conclude, we could not replicate the previously reported association with SNPs in the IL4 and IL4R genes in our independent cohort, nor did we find that common SNPs in genes encoding for RLRs and the downstream adapter MAVS were associated with susceptibility to severe RSV infections. Despite the existing evidence demonstrating a functional immunological impact of these SNPs, our data suggest that the biological effect of each individual SNP is unlikely to affect clinical outcomes of RSV infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Estudos de Associação Genética , Interleucina-4/metabolismo , Polimorfismo de Nucleotídeo Único , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia , Transdução de Sinais/genética , Alelos , Estudos de Casos e Controles , Criança , Proteína DEAD-box 58 , Humanos
15.
Neonatology ; 106(1): 1-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603545

RESUMO

BACKGROUND: Preterm neonates are highly vulnerable to infection. OBJECTIVES: To investigate the developmental contribution of prematurity, chorioamnionitis and antenatal corticosteroids (ANS) on the maturation of neonatal microbial pathogen recognition responses. METHODS: Using standardized protocols, we assayed multiple inflammatory cytokine responses (IL-1ß, IL-6, TNF-α and IL-12/23p40) to three prototypic Toll-like receptor (TLR) agonists, i.e. TLR4 (lipopolysaccharide), TLR5 (flagellin) and TLR7/8 (R848), and to the non-TLR retinoic acid-inducible gene I (RIG-I)-like receptor agonist, in cord blood mononuclear cells from neonates born before 33 weeks of gestation and at term. RESULTS: TLR responses develop asynchronously in preterm neonates, whereby responses to TLR7/8 were more mature and were followed by the development of TLR4 responses, which were also heterogeneous. Responses to TLR5 were weakest and most immature. Maturity in TLR responses was not influenced by sex. Overall, we detected no significant contribution of ANS and chorioamnionitis to the developmental attenuation of either TLR or RIG-I responses. CONCLUSIONS: The maturation of anti-microbial responses in neonates born early in gestation follows an asynchronous developmental hierarchy independently of an exposure to chorioamnionitis and ANS. Our data provide an immunological basis for the predominance of specific microbial infections in this age group.


Assuntos
Imunidade Inata/imunologia , Lactente Extremamente Prematuro/imunologia , Corticosteroides/administração & dosagem , Corticosteroides/imunologia , Área Sob a Curva , Corioamnionite/imunologia , Feminino , Sangue Fetal/imunologia , Flagelina/imunologia , Humanos , Imidazóis/imunologia , Recém-Nascido , Subunidade p40 da Interleucina-12/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Modelos Lineares , Lipopolissacarídeos/imunologia , Masculino , Gravidez , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/sangue
16.
J Immunol ; 192(3): 948-57, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24391215

RESUMO

Newborn infants, including those born at term without congenital disorders, are at high risk of severe disease from respiratory syncytial virus (RSV) infection. Indeed, our current local surveillance data demonstrate that approximately half of children hospitalized with RSV were ≤3 mo old, and 74% were born at term. Informed by this clinical epidemiology, we investigated antiviral innate immune responses in early life, with the goal of identifying immunological factors underlying the susceptibility of infants and young children to severe viral lower respiratory tract infections. We compared RSV-induced innate cytokine production in blood mononuclear cells from neonates, young children aged 12-59 mo, and healthy adults. RSV-induced IFN-α production was primarily mediated by plasmacytoid dendritic cells (pDCs), and was significantly lower in term infants and young children < 5 y of age than in adults (p < 0.01). RSV-induced IFN-α production in human pDCs proceeded independently of endosomal TLRs, and human pDCs from healthy adult donors produced IFN-α in a retinoic acid-inducible gene I protein (RIG-I)-dependent manner. Of interest, young age and premature birth were independently associated with attenuated RIG-I-dependent IFN-α responses (p < 0.01). In contrast to IFN-α production, proinflammatory IL-6 responses to RSV were mediated by monocytes, appeared less dependent on RIG-I, and were significantly impaired only among preterm infants, not in term infants and young children. Our results suggest that human pDCs are less functional in early life, which may contribute to the increased susceptibility of infants and young children to severe RSV disease.


Assuntos
Envelhecimento/imunologia , RNA Helicases DEAD-box/imunologia , Células Dendríticas/metabolismo , Recém-Nascido/imunologia , Doenças do Prematuro/imunologia , Interferon-alfa/biossíntese , Leucócitos Mononucleares/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Adulto , Criança , Pré-Escolar , Citocinas/biossíntese , Citocinas/genética , Proteína DEAD-box 58 , Células Dendríticas/imunologia , Suscetibilidade a Doenças , Endossomos/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Lactente , Recém-Nascido Prematuro , Pacientes Internados , Interferon-alfa/genética , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Infecções por Vírus Respiratório Sincicial/epidemiologia , Receptores Toll-Like/imunologia
18.
Trends Microbiol ; 21(11): 568-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24119913

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. The innate immune response plays a pivotal role in host defense against RSV, but whether severe outcomes following RSV infection result from excessive or poor innate immune recognition remains unclear. Recent research suggests a situation in which crosstalk between families of pattern recognition receptors (PRRs) occurs in a cell type-dependent manner. The current challenge to empower novel therapeutic approaches and vaccine development is to confirm the role of the individual receptors in RSV pathogenesis in humans.


Assuntos
Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/imunologia , Humanos , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo
19.
J Leukoc Biol ; 93(6): 933-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543769

RESUMO

RSV is the major cause of severe bronchiolitis in infants, and severe bronchiolitis as a result of RSV is associated with subsequent asthma development. A biased Th2 immune response is thought to be responsible for neonatal RSV pathogenesis; however, molecular mechanisms remain elusive. Our data demonstrate, for the first time, that IL-4Rα is up-regulated in vitro on human CD4(+) T cells from cord blood following RSV stimulation and in vivo on mouse pulmonary CD4(+) T cells upon reinfection of mice, initially infected as neonates. Th cell-specific deletion of Il4ra attenuated Th2 responses and abolished the immunopathophysiology upon reinfection, including airway hyper-reactivity, eosinophilia, and mucus hyperproduction in mice infected initially as neonates. These findings support a pathogenic role for IL-4Rα on Th cells following RSV reinfection of mice initially infected as neonates; more importantly, our data from human cells suggest that the same mechanism occurs in humans.


Assuntos
Subunidade alfa de Receptor de Interleucina-4/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Células Th2/imunologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/imunologia , Citocinas/análise , Citocinas/biossíntese , Citocinas/imunologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/imunologia
20.
J Immunol ; 190(8): 3949-58, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23487427

RESUMO

Respiratory diseases are the most frequent chronic illnesses in babies and children. Although a vigorous innate immune system is critical for maintaining lung health, a balanced response is essential to minimize damaging inflammation. We investigated the functional and clinical impact of human genetic variants in the promoter of NFKBIA, which encodes IκBα, the major negative regulator of NF-κB. In this study, we quantified the functional impact of NFKBIA promoter polymorphisms (rs3138053, rs2233406, and rs2233409) on promoter-driven protein expression, allele-specific and total NFKBIA mRNA expression, IκBα protein expression, and TLR responsiveness; mapped innate immune regulatory networks active during respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia; and genotyped and analyzed independent cohorts of children with respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia. Genetic variants in the promoter of NFKBIA influenced NFKBIA gene expression, IκBα protein expression, and TLR-mediated inflammatory responses. Using a systems biology approach, we demonstrated that NFKBIA/IκBα is a central hub in transcriptional responses of prevalent childhood lung diseases, including respiratory syncytial virus infection, asthma, and bronchopulmonary dysplasia. Finally, by examining independent pediatric lung disease cohorts, we established that this immunologically relevant genetic variation in the promoter of NFKBIA is associated with differential susceptibility to severe bronchiolitis following infection with respiratory syncytial virus, airway hyperresponsiveness, and severe bronchopulmonary dysplasia. These data highlight the importance of negative innate immune regulators, such as NFKBIA, in pediatric lung disease and begin to unravel common aspects in the genetic predisposition to bronchopulmonary dysplasia, bronchiolitis, and childhood asthma.


Assuntos
Asma/imunologia , Bronquiolite/imunologia , Displasia Broncopulmonar/imunologia , Predisposição Genética para Doença , Variação Genética/imunologia , Subunidade p50 de NF-kappa B/genética , Animais , Asma/genética , Bronquiolite/genética , Bronquiolite/virologia , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/virologia , Células CHO , Criança , Pré-Escolar , Cricetinae , Feminino , Humanos , Lactente , Recém-Nascido , Subunidade p50 de NF-kappa B/fisiologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Vírus Sinciciais Respiratórios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA