Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Public Health ; : 1-15, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32589115

RESUMO

Information about genetic engineering (GE) for vector control in the United States is disseminated primarily in English, though non-English speakers are equally, and in some geographic regions even more affected by such technologies. Non-English-speaking publics should have equal access to such information, which is especially critical when the technology in question may impact whole communities. We convened an interdisciplinary workgroup to translate previously developed narrated slideshows on gene drive mosquitoes from English into Spanish, reviewing each iteration for scientific accuracy and accessibility to laypeople. Using the finalised stimuli, we conducted five online, chat-based focus groups with Spanish-speaking adults from California. Overall, participants expressed interest in the topic and were able to summarise the information presented in their own words. Importantly, participants asked for clarification and expressed scepticism about the information presented, indicating critical engagement with the material. Through collaboration with Spanish-speaking scientists engaged in the development of GE methods of vector control, we translated highly technical scientific information into Spanish that successfully engaged Spanish-speaking participants in conversations about this topic. In this manuscript, we document the feasibility of consulting Spanish-speaking publics about a complex emerging technology by drawing on the linguistic diversity of the scientific teams developing the technology.

2.
BMC Biol ; 18(1): 50, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398005

RESUMO

BACKGROUND: The discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently engineered threshold-dependent gene drive systems-reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UDMEL-to explore their ability to be confined and remediated. RESULTS: We simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika, and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UDMEL requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely. CONCLUSIONS: Our analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.

3.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320389

RESUMO

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.

4.
Vector Borne Zoonotic Dis ; 20(4): 237-251, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32155390

RESUMO

Mosquitoes containing gene drive systems are being developed as complementary tools to prevent transmission of malaria and other mosquito-borne diseases. As with any new tool, decision makers and other stakeholders will need to balance risks (safety) and benefits (efficacy) when considering the rationale for testing and deploying gene drive-modified mosquito products. Developers will benefit from standards for judging whether an investigational gene drive product meets acceptability criteria for advancing to field trials. Such standards may be formalized as preferred product characteristics and target product profiles, which describe the desired attributes of the product category and of a particular product, respectively. This report summarizes discussions from two scientific workshops aimed at identifying efficacy and safety characteristics that must be minimally met for an investigational gene drive-modified mosquito product to be deemed viable to move from contained testing to field release and the data that will be needed to support an application for first field release.

5.
J Exp Biol ; 223(Pt Suppl 1)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034041

RESUMO

Vector-borne diseases, such as dengue, Zika and malaria, are a major cause of morbidity and mortality worldwide. These diseases have proven difficult to control and currently available management tools are insufficient to eliminate them in many regions. Gene drives have the potential to revolutionize vector-borne disease control. This suite of technologies has advanced rapidly in recent years as a result of the availability of new, more efficient gene editing technologies. Gene drives can favorably bias the inheritance of a linked disease-refractory gene, which could possibly be exploited (i) to generate a vector population incapable of transmitting disease or (ii) to disrupt an essential gene for viability or fertility, which could eventually eliminate a population. Importantly, gene drives vary in characteristics such as their transmission efficiency, confinability and reversibility, and their potential to develop resistance to the drive mechanism. Here, we discuss recent advancements in the gene drive field, and contrast the benefits and limitations of a variety of technologies, as well as approaches to overcome these limitations. We also discuss the current state of each gene drive technology and the technical considerations that need to be addressed on the pathway to field implementation. While there are still many obstacles to overcome, recent progress has brought us closer than ever before to genetic-based vector modification as a tool to support vector-borne disease elimination efforts worldwide.

6.
Nat Commun ; 11(1): 352, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953404

RESUMO

CRISPR-based gene drives can spread through wild populations by biasing their own transmission above the 50% value predicted by Mendelian inheritance. These technologies offer population-engineering solutions for combating vector-borne diseases, managing crop pests, and supporting ecosystem conservation efforts. Current technologies raise safety concerns for unintended gene propagation. Herein, we address such concerns by splitting the drive components, Cas9 and gRNAs, into separate alleles to form a trans-complementing split-gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance of the separate transgenes. This dual-component configuration allows for combinatorial transgene optimization and increases safety by restricting escape concerns to experimentation windows. We employ the tGD and a small-molecule-controlled version to investigate the biology of component inheritance and resistant allele formation, and to study the effects of maternal inheritance and impaired homology on efficiency. Lastly, mathematical modeling of tGD spread within populations reveals potential advantages for improving current gene-drive technologies for field population modification.


Assuntos
Tecnologia de Impulso Genético/métodos , Genética Populacional/métodos , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sistemas CRISPR-Cas , Dípteros , Ecossistema , Feminino , Edição de Genes , Genes Ligados ao Cromossomo X , Masculino , Modelos Teóricos , RNA Guia/genética , Transgenes
7.
Elife ; 92020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31960794

RESUMO

Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become of paramount importance. The use of gene drives has sparked significant enthusiasm for genetic control of mosquitoes; however, no such system has been developed in Ae. aegypti. To fill this void, here we develop several CRISPR-based split gene drives for use in this vector. With cleavage rates up to 100% and transmission rates as high as 94%, mathematical models predict that these systems could spread anti-pathogen effector genes into wild populations in a safe, confinable and reversible manner appropriate for field trials and effective for controlling disease. These findings could expedite the development of effector-linked gene drives that could safely control wild populations of Ae. aegypti to combat local pathogen transmission.

8.
PLoS Genet ; 15(12): e1008440, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856182

RESUMO

Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed 'full introduction' (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6-8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6-12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13-16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs.


Assuntos
Anopheles/fisiologia , Malária/prevenção & controle , Transgenes , Animais , Animais Geneticamente Modificados , Anopheles/genética , Feminino , Genética Populacional , Abrigo para Animais , Malária/genética , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Fenótipo , Comportamento Sexual Animal
9.
Front Genet ; 10: 1072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737050

RESUMO

While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based strategies to control these diseases. In one such strategy, called "population replacement", mosquitoes, and other disease vectors are engineered with effector genes that render them unable to transmit pathogens. These effector genes can be linked to "gene drive" systems that can bias inheritance in their favor, providing novel opportunities to replace disease-susceptible vector populations with disease-refractory ones over the course of several generations. While promising for the control of vector-borne diseases on a wide scale, this sets up an evolutionary tug-of-war between the introduced effector genes and the pathogen. Here, we review the disease-refractory genes designed to date to target Plasmodium falciparum malaria transmitted by Anopheles gambiae, and arboviruses transmitted by Aedes aegypti, including dengue serotypes 2 and 3, chikungunya, and Zika viruses. We discuss resistance concerns for these effector genes, and genetic approaches to prevent parasite and viral escape variants. One general approach is to increase the evolutionary hurdle required for the pathogen to evolve resistance by attacking it at multiple sites in its genome and/or multiple stages of development. Another is to reduce the size of the pathogen population by other means, such as with vector control and antimalarial drugs. We discuss lessons learned from the evolution of resistance to antimalarial and antiviral drugs and implications for the management of resistance after its emergence. Finally, we discuss the target product profile for population replacement strategies for vector-borne disease control. This differs between early phase field trials and wide-scale disease control. In the latter case, the demands on effector gene efficacy are great; however, with new possibilities ushered in by CRISPR-based gene editing, and when combined with surveillance, monitoring, and rapid management of pathogen resistance, the odds are increasingly favoring effector genes in the upcoming evolutionary tug-of-war.

11.
BMC Genomics ; 20(1): 204, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866822

RESUMO

BACKGROUND: In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS: Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS: A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.


Assuntos
Aedes/classificação , Genoma de Inseto , Sequenciamento Completo do Genoma/veterinária , Aedes/genética , Animais , California , Evolução Molecular , Variação Genética , Genética Populacional , Tamanho do Genoma , Espécies Introduzidas , Metagenômica , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia , Filogeografia
12.
Nat Commun ; 10(1): 84, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622266

RESUMO

The sterile insect technique (SIT) is an environmentally safe and proven technology to suppress wild populations. To further advance its utility, a novel CRISPR-based technology termed precision guided SIT (pgSIT) is described. PgSIT mechanistically relies on a dominant genetic technology that enables simultaneous sexing and sterilization, facilitating the release of eggs into the environment ensuring only sterile adult males emerge. Importantly, for field applications, the release of eggs will eliminate burdens of manually sexing and sterilizing males, thereby reducing overall effort and increasing scalability. Here, to demonstrate efficacy, we systematically engineer multiple pgSIT systems in Drosophila which consistently give rise to 100% sterile males. Importantly, we demonstrate that pgSIT-generated sterile males are fit and competitive. Using mathematical models, we predict pgSIT will induce substantially greater population suppression than can be achieved by currently-available self-limiting suppression technologies. Taken together, pgSIT offers to potentially transform our ability to control insect agricultural pests and disease vectors.


Assuntos
Drosophila/genética , Edição de Genes/métodos , Insetos Vetores/genética , Controle Biológico de Vetores/métodos , Comportamento Sexual Animal , Animais , Sistemas CRISPR-Cas/genética , Drosophila/fisiologia , Feminino , Genoma de Inseto/genética , Insetos Vetores/fisiologia , Masculino , Modelos Biológicos , Controle da População/métodos , RNA Guia/genética
13.
PLoS Negl Trop Dis ; 12(11): e0006794, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30418968

RESUMO

Progress towards controlling and eliminating parasitic worms, including schistosomiasis, onchocerciasis, and lymphatic filariasis, is advancing rapidly as national governments, multinational NGOs, and pharmaceutical companies launch collaborative chemotherapeutic control campaigns. Critical questions remain regarding the potential for achieving elimination of these infections, and analytical methods can help to quickly estimate progress towards-and the probability of achieving-elimination over specific timeframes. Here, we propose the effective reproduction number, Reff, as a proxy of elimination potential for sexually reproducing worms that are subject to poor mating success at very low abundance (positive density dependence, or Allee effects). Reff is the number of parasites produced by a single reproductive parasite at a given stage in the transmission cycle, over the parasite's lifetime-it is the generalized form of the more familiar basic reproduction number, R0, which only applies at the beginning of an epidemic-and it can be estimated in a 'model-free' manner by an estimator ('ε'). We introduce ε, demonstrate its estimation using simulated data, and discuss how it may be used in planning and evaluation of ongoing elimination efforts for a range of parasitic diseases.


Assuntos
Erradicação de Doenças/métodos , Administração Massiva de Medicamentos/estatística & dados numéricos , Schistosoma/efeitos dos fármacos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Animais , Número Básico de Reprodução , Coleta de Dados , Erradicação de Doenças/estatística & dados numéricos , Métodos Epidemiológicos , Humanos , Administração Massiva de Medicamentos/métodos , Modelos Teóricos , Oncocercose/tratamento farmacológico , Parasitos/fisiologia , Doenças Parasitárias/tratamento farmacológico , Doenças Parasitárias/epidemiologia , Doenças Parasitárias/parasitologia , Reprodução , Schistosoma/fisiologia , Esquistossomose/tratamento farmacológico , Esquistossomose/transmissão
14.
Proc Natl Acad Sci U S A ; 115(24): 6189-6194, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844184

RESUMO

The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect. To evaluate the molecular details of such a sex conversion-based suppression gene drive experimentally, we implemented this strategy in Drosophila melanogaster to serve as a safe model organism. We generated a Cas9-based homing gene-drive element targeting the transformer gene and showed its high efficiency for sex conversion from females to males. However, nonhomologous end joining increased the rate of mutagenesis at the target site, which resulted in the emergence of drive-resistant alleles and therefore curbed the gene drive. This confirms previous studies that simple homing CRISPR/Cas9 gene-drive designs will be ineffective. Nevertheless, by performing population dynamics simulations using the parameters we obtained in D. melanogaster and by adjusting the model for the agricultural pest Ceratitis capitata, we were able to identify adequate modifications that could be successfully applied for the management of wild Mediterranean fruit fly populations using our proposed sex conversion-based suppression gene-drive strategy.


Assuntos
Sistemas CRISPR-Cas/genética , Evolução Molecular , Genes de Insetos/genética , Controle Biológico de Vetores/métodos , Processos de Determinação Sexual/genética , Animais , Ceratitis capitata/genética , Drosophila melanogaster/genética , Feminino , Edição de Genes , Masculino , Modelos Genéticos
15.
Sci Rep ; 8(1): 7713, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769582

RESUMO

As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3-5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns - a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively "absorbed" as they move outwards from their origin of travel. The gravity model provided a better fit to the data overall and for travel to large populations, while the radiation model provided a better fit for nearby populations. One strength of the data set was that trips could be categorized according to traveler group - namely, women traveling with children in all survey countries and youth workers in Mali. For gravity models fitted to data specific to these groups, youth workers were found to have a higher travel frequency to large population centers, and women traveling with children a lower frequency. These models may help predict the spatial transmission of malaria parasites and inform strategies to control their spread.


Assuntos
Malária/epidemiologia , Malária/transmissão , Modelos Teóricos , Viagem/estatística & dados numéricos , Adolescente , Adulto , África/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Prevalência , Análise Espacial , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 115(18): 4725-4730, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666236

RESUMO

Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii We demonstrate that this drive system, based on an engineered maternal "toxin" coupled with a linked embryonic "antidote," is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Engenharia Genética , Controle Biológico de Vetores , Proteína Smad4/genética , Animais
17.
ACS Synth Biol ; 7(5): 1359-1370, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608276

RESUMO

Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. These strains drive high threshold population replacement in laboratory populations. While it remains to be shown that engineered translocations can bring about population replacement in wild populations, these observations suggest that further exploration of engineered translocations as a tool for controlled population replacement is warranted.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Engenharia Genética/métodos , Translocação Genética , Animais , Animais Geneticamente Modificados , Feminino , Tecnologia de Impulso Genético , Heterozigoto , Recombinação Homóloga , Masculino , Densidade Demográfica , Transgenes
18.
ACS Chem Biol ; 13(2): 424-430, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29370514

RESUMO

The recent discovery of CRISPR and its application as a gene editing tool has enabled a range of gene drive systems to be engineered with greater ease. In order for the benefits of this technology to be realized, in some circumstances drive systems should be developed that are capable of both spreading into populations to achieve their desired impact and being recalled in the event of unwanted consequences or public disfavor. We review the performance of three broad categories of drive systems at achieving these goals: threshold-dependent drives, homing-based drive and remediation systems, and temporally self-limiting systems such as daisy-chain drives.


Assuntos
Sistemas CRISPR-Cas/genética , Tecnologia de Impulso Genético/métodos , Animais , Ecologia/métodos , Insetos/genética , Biologia Molecular/métodos
19.
Vector Borne Zoonotic Dis ; 18(1): 2-13, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040058

RESUMO

Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods. In addition to providing physical containment, invasive genetic factors require greater attention to strain management, including their distribution and identity confirmation. In this study, we focus on insects containing such factors with recommendations for investigators who are creating them, institutional biosafety committees charged with ensuring safety, funding agencies providing support, those managing insectaries handling these materials who are responsible for containment, and other persons who will be receiving insects-transgenic or not-from these facilities. We give specific examples of efforts to modify mosquitoes for mosquito-borne disease control, but similar considerations are relevant to other arthropods that are important to human health, the environment, and agriculture.


Assuntos
Animais Geneticamente Modificados , Artrópodes/genética , Artrópodes/fisiologia , Tecnologia de Impulso Genético , Animais , Culicidae/genética , Insetos Vetores/genética , Controle de Mosquitos , Transgenes
20.
PLoS One ; 12(12): e0187680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29194440

RESUMO

BACKGROUND: Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. METHOD AND FINDINGS: We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. CONCLUSION: The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.


Assuntos
Anopheles/fisiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Ecossistema , Mosquitos Vetores , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA