Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Commun Biol ; 3(1): 735, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277614


The TRAnsport Protein Particle (TRAPP) complexes act as Guanine nucleotide exchange factors (GEFs) for Rab GTPases, which are master regulators of membrane trafficking in eukaryotic cells. In metazoans, there are two large multi-protein TRAPP complexes: TRAPPII and TRAPPIII, with the TRAPPII complex able to activate both Rab1 and Rab11. Here we present detailed biochemical characterisation of Rab-GEF specificity of the human TRAPPII complex, and molecular insight into Rab binding. GEF assays of the TRAPPII complex against a panel of 20 different Rab GTPases revealed GEF activity on Rab43 and Rab19. Electron microscopy and chemical cross-linking revealed the architecture of mammalian TRAPPII. Hydrogen deuterium exchange MS showed that Rab1, Rab11 and Rab43 share a conserved binding interface. Clinical mutations in Rab11, and phosphomimics of Rab43, showed decreased TRAPPII GEF mediated exchange. Finally, we designed a Rab11 mutation that maintained TRAPPII-mediated GEF activity while decreasing activity of the Rab11-GEF SH3BP5, providing a tool to dissect Rab11 signalling. Overall, our results provide insight into the GTPase specificity of TRAPPII, and how clinical mutations disrupt this regulation.

Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Humanos , Insetos , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Especificidade por Substrato , Espectrometria de Massas em Tandem , Proteínas rab de Ligação ao GTP/genética
Vet Immunol Immunopathol ; 192: 33-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29042013


Inhibition of prostaglandin E2 (PGE2) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE2-selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE2, thromboxane (TXA2) and prostacyclin (PGI2) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE2, TXA2 and PGI2), while the mPGES-1 inhibitor MF63 selectively inhibited PGE2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE2 production when compared to either COX inhibitor, which might be beneficial in a clinical setting. In conclusion, this work identifies mPGES-1 as a key regulator of PGE2 production and a PGE2-selective target in equine leukocytes. This study demonstrates that mPGES-1 is a potentially safer and effective therapeutic target for treatment of equine inflammatory disease when compared to traditional non-steroidal anti-inflammatory drugs.

Dinoprostona/antagonistas & inibidores , Inflamação/veterinária , Prostaglandina-E Sintases/antagonistas & inibidores , Animais , Western Blotting/veterinária , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/veterinária , Cavalos , Inflamação/metabolismo , Inflamação/fisiopatologia , Leucócitos/metabolismo , Microssomos/enzimologia , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária