Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33206296

RESUMO

Phytoplankton blooms, including harmful algal blooms (HABs), have serious impacts on ecosystems, public health, and productivity activities. Rapid detection and monitoring of marine microalgae are important in predicting and managing HABs. We developed a toolkit, the Suitcase Lab, to detect harmful algae species in the field. We demonstrated the Suitcase Lab's capabilities for sampling, filtration, DNA extraction, and loop-mediated isothermal amplification (LAMP) detection in cultured Alexandrium catenella cells as well as Chilean coastal waters from four sites: Repollal, Isla García, Puerto Montt, and Metri. A LAMP assay using the Suitcase Lab in the field confirmed microscopic observations of A. catenella in samples from Repollal and Isla García. The Suitcase Lab allowed the rapid detection of A. catenella, within 2 h from the time of sampling, even at a single cell per milliliter concentrations, demonstrating its usefulness for quick and qualitative on-site diagnosis of target toxic algae species. This method is applicable not only to detecting harmful algae but also to other field studies that seek a rapid molecular diagnostic test.

2.
Microorganisms ; 8(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202619

RESUMO

1-Aminociclopropane-1-carboxylate (ACC)-degrading bacteria having been widely studied for their use in alleviating abiotic stresses in plants. In the present study, we isolated and characterized ACC-degrading bacteria from the rhizosphere, phyllosphere, and endosphere of the Antarctic vascular plants Deschampsia antarctica and Colobanthus quitensis. One hundred and eighty of the 578 isolates (31%) were able to grow on minimal medium containing ACC, with 101 isolates (23, 37, and 41 endosphere-, phyllosphere- and rhizosphere-associated isolates, respectively) identified as being genetically unique by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Subsequently, freeze/thaw treatments and ice-recrystallization-inhibition (IRI) activity assays were performed, the results of which revealed that 77 (13%) of cold-tolerant isolates exhibited putative ACC deaminase activity. Significant (p ≤ 0.05) differences in IRI activity were also observed between the studied plant niches. Surprisingly, all the cold-tolerant isolates showed ACC deaminase activity, independent of the plant niches, with 12 isolates showing the highest ACC deaminase activities of 13.21-39.56 mmol α KB mg protein-1 h-1. These isolates were categorized as 'cold-tolerant hyper-ACC-degrading bacteria', and identified as members of Pseudomonas, Serratia, and Staphylococcus genera. The results revealed the occurrence of cold-tolerant hyper-ACC-degrading bacteria in diverse plant niches of Antarctic vascular plants, that could be investigated as novel microbial inoculants to alleviate abiotic stresses in plants.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33092111

RESUMO

Harmful algae blooms (HABs) cause acute effects on marine ecosystems due to their production of endogenous toxins or their enormous biomass, leading to significant impacts on local economies and public health. Although HAB monitoring has been intensively performed at spatiotemporal scales in coastal areas of the world over the last decades, procedures have not yet been standardized. HAB monitoring procedures are complicated and consist of many methodologies, including physical, chemical, and biological water sample measurements. Each monitoring program currently uses different combinations of methodologies depending on site specific purposes, and many prior programs refer to the procedures in quotations. HAB monitoring programs in Chile have adopted the traditional microscopic and toxin analyses but not molecular biology and bacterial assemblage approaches. Here we select and optimize the HAB monitoring methodologies suitable for Chilean geography, emphasizing on metabarcoding analyses accompanied by the classical tools with considerations including cost, materials and instrument availability, and easiness and efficiency of performance. We present results from a pilot study using the standardized stepwise protocols, demonstrating feasibility and plausibility for sampling and analysis for the HAB monitoring. Such specific instructions in the standardized protocol are critical obtaining quality data under various research environments involving multiple stations, different analysts, various time-points, and long HAB monitoring duration.

4.
Environ Int ; 145: 106156, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33039877

RESUMO

Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.

5.
Sci Rep ; 10(1): 12580, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724214

RESUMO

MinION (Oxford Nanopore Technologies), a portable nanopore sequencer, was introduced in 2014 as a new DNA sequencing technology. MinION is now widely used because of its low initial start-up costs relative to existing DNA sequencers, good portability, easy-handling, real-time analysis and long-read output. However, differences in the experimental conditions used for 16S rRNA-based PCR can bias bacterial community assessments in samples. Therefore, basic knowledge about reliable experimental conditions is needed to ensure the appropriate use of this technology. Our study concerns the reliability of techniques for obtaining accurate and quantitative full-length 16S rRNA amplicon sequencing data for bacterial community structure assessment using MinION. We compared five PCR conditions using three independent mock microbial community standard DNAs and established appropriate, standardized, better PCR conditions among the trials. We then sequenced two mock communities and six environmental samples using Illumina MiSeq for comparison. Modifying the PCR conditions improved the sequencing quality; the optimized conditions were 35 cycles of 95 °C for 1 min, 60 °C for 1 min and 68 °C for 3 min. Our results provide important information for researchers to determine bacterial community using MinION accurately.

6.
Sci Rep ; 10(1): 12406, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699373

RESUMO

To study the size-resolved characteristics of airborne bacterial community composition, diversity, and abundance, outdoor aerosol samples were analysed by 16S rRNA gene-targeted quantitative PCR and amplicon sequencing with Illumina MiSeq. The samples were collected using size-resolved samplers between August and October 2016, at a suburban site in Toyama City and an urban site in Yokohama City, Japan. The bacterial communities were found to be dominated by Actinobacteria, Firmicutes, and Proteobacteria. At the genus level, we found a high abundance of human skin-associated bacteria, such as Propionibacterium, Staphylococcus, and Corynebacterium, in the urban site. Whereas, a high abundance of bacteria associated with soil and plants, such as Methylobacterium and Sphingomonas, was observed in the suburban site. Furthermore, our data revealed a shift in the bacterial community structure, diversity, and abundance of total bacteria at a threshold of 1.1-µm diameter. Interestingly, we observed that Legionella spp., the causal agents of legionellosis in humans, were mainly detected in > 2.1 µm coarse particles. Our data indicate that local environmental factors including built environments could influence the outdoor airborne bacterial community at each site. These results provide a basis for understanding the size-resolved properties of bacterial community composition, diversity, and abundance in outdoor aerosol samples and their potential influence on human health.

7.
Foodborne Pathog Dis ; 17(11): 666-671, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32551973

RESUMO

Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistant Escherichia coli from retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolate E. coli. We successfully isolated E. coli from 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates with tetA and/or tetB gene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes with blaTEM (15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes with sul2 (15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistant E. coli can easily be transferred from farms to tables from retail meats obtained from roadside butcheries.

8.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354967

RESUMO

Helicobacter pylori ATCC 43504 is a type strain isolated from a gastric cancer patient in Australia and is commonly used for pathogenicity studies. In this study, we report the complete genome sequence of a strain that can infect gerbils. The data provide a basis for future H. pylori research.

9.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325973

RESUMO

Abstract: This study describes the first full genomic sequence of an mcr-9 and blaVIM-4-carrying multidrug-resistant Enterobacter hormaechei clinical isolate from Egypt. The strain was isolated in April 2015 from the sputum of a patient in Cairo, Egypt. The mcr-9 and blaVIM-4 genes were identified by PCR screening and DNA sequencing; the isolate was subjected to antimicrobial susceptibility testing, conjugation experiments, and whole genomic sequencing. mcr-9 and blaVIM-4 were carried by an IncHI2 plasmid, pAMS-38a (281,121 bp in size); the plasmid also carried genes conferring resistance against sulfonamides (sul1), quinolones (qnrA1), trimethoprim (dfrA1), ß-lactams (blaTEM-1B), aminoglycosides (aac (6')-II, aadA23, aadA2b, and ant(2'')-Ia). The strain was susceptible to colistin (MIC, <0.25 µg/mL); this could be due to the absence of the qseC/qseB regulatory system located downstream of mcr-9 in Enterobacterales, which is involved in the induction of colistin-resistance. The genetic context of mcr-9 and blaVIM-4 was identified as IS1-mcr-9-IS903-pcoS-∆pcoE-rcnA and intI1-blaVIM-4-aac (6')-II-dfrA1-∆aadA23-smr-ISPa21-qacE∆1, respectively. This is the first report of an mcr-9 and blaVIM-4 /IncHI2-carrying multidrug-resistant E. hormaechei clinical isolate from Africa and the Middle East. Plasmids of the IncHI2 group and the two insertion sequences (IS1, and IS903) might be the main vehicles for dissemination of mcr-9. Further screening for mcr-9 is essential for identifying its incidence and to prevent its dissemination.

10.
Microb Ecol ; 80(2): 249-265, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32060621

RESUMO

Turfs are among the major benthic components of reef systems worldwide. The nearly complete genome sequences, basic physiological characteristics, and phylogenomic reconstruction of two phycobiliprotein-rich filamentous cyanobacteria strains isolated from turf assemblages from the Abrolhos Bank (Brazil) are investigated. Both Adonisia turfae CCMR0081T (= CBAS 745T) and CCMR0082 contain approximately 8 Mbp in genome size and experiments identified that both strains exhibit chromatic acclimation. Whereas CCMR0081T exhibits chromatic acclimation type 3 (CA3) regulating both phycocyanin (PC) and phycoerythrin (PE), CCMR0082 strain exhibits chromatic acclimation type 2 (CA2), in correspondence with genes encoding specific photosensors and regulators for PC and PE. Furthermore, a high number and diversity of secondary metabolite synthesis gene clusters were identified in both genomes, and they were able to grow at high temperatures (28 °C, with scant growth at 30 °C). These characteristics provide insights into their widespread distribution in reef systems.

11.
Int Immunol ; 32(2): 133-141, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630178

RESUMO

Accumulating evidence has revealed that lymphoid tissue-resident commensal bacteria (e.g. Alcaligenes spp.) survive within dendritic cells. We extended our previous study by investigating microbes that persistently colonize colonic macrophages. 16S rRNA-based metagenome analysis using DNA purified from murine colonic macrophages revealed the presence of Stenotrophomonas maltophilia. The in situ intracellular colonization by S. maltophilia was recapitulated in vitro by using bone marrow-derived macrophages (BMDMs). Co-culture of BMDMs with clinically isolated S. maltophilia led to increased mitochondrial respiration and robust IL-10 production. We further identified a 25-kDa protein encoded by the gene assigned as smlt2713 (recently renamed as SMLT_RS12935) and secreted by S. maltophilia as the factor responsible for enhanced IL-10 production by BMDMs. IL-10 production is critical for maintenance of the symbiotic condition, because intracellular colonization by S. maltophilia was impaired in IL-10-deficient BMDMs, and smlt2713-deficient S. maltophilia failed to persistently colonize IL-10-competent BMDMs. These findings indicate a novel commensal network between colonic macrophages and S. maltophilia that is mediated by IL-10 and smlt2713.


Assuntos
Macrófagos/imunologia , Stenotrophomonas maltophilia/imunologia , Animais , Técnicas de Cocultura , Feminino , Homeostase/imunologia , Interleucina-10/deficiência , Interleucina-10/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID
12.
Environ Microbiol ; 22(10): 4473-4484, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33448654

RESUMO

The dissemination and abundances of Vibrio species in aquatic environments are of interest, as some species cause emerging diseases in humans and in aquatic organisms like fish. It is suggested that Vibrio cholerae non-O1 infections of Plecoglossus altivelis ('ayu') were spread to various parts of Japan through the annual transplantation of juvenile fish. To investigate this, we used genome-aided tracing of 17 V. cholerae strains isolated from ayu between the 1970s and 1990s in different Japanese freshwater systems. The strains formed a genomic clade distinct from all known clades, which we designate as the Ayu clade. Two clonal genomic groups identified within the clade, Ayu-1 and Ayu-2, persisted for a few years (between 1977 to 1979 and 1987 to 1990, respectively), and clonal replacement of Ayu-1 by Ayu-2 took place over an 8-year period. Despite the high similarity between Ayu-1 and Ayu-2 (> 99.9% identity and > 97% fraction of genomes shared), differences in their gene repertoires were found, raising the possibility that they are phenotypically distinct. These results highlight the importance of genome-based studies for understanding the long-term dynamics of populations over the timescale of years.

13.
Vet Res ; 50(1): 94, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727180

RESUMO

Although Streptococcus suis has attracted public attention as a major swine and human pathogen, this bacterium has also been isolated from other animals, including ruminants. However, recent taxonomic studies revealed the existence of other species that were previously identified as S. suis, and some of these isolates were reclassified as the novel species Streptococcus ruminantium. In Japan, biochemically identified S. suis is frequently isolated from diseased ruminants; however, such isolates have not yet been identified accurately, and their aetiological importance in ruminants is unclear. Therefore, to understand the importance of S. suis and S. suis-like bacteria in ruminants, we reclassified S. suis isolates from ruminants according to the updated classification and investigated their genetic diversity. Although both S. suis and S. ruminantium were isolated from healthy and diseased ruminants, most of the isolates from diseased animals were S. ruminantium, implying that S. ruminantium is more likely to be associated with ruminant disease than S. suis. However, the ruminant S. suis and S. ruminantium isolates from diseased animals were classified into diverse genotypes rather than belonging to certain clonal groups. Genome sequence analysis of 20 S. ruminantium isolates provided information about the antibiotic resistance, potential virulence, and serological diversity of this species. We further developed an S. ruminantium-specific PCR assay to aid in the identification of this bacterium. The information obtained and the method established in this study will contribute to the accurate diagnosis of ruminant streptococcal infections.


Assuntos
Variação Genética , Genótipo , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Streptococcus/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/microbiologia , Cabras , Japão/epidemiologia , Prevalência , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus/classificação , Streptococcus suis/classificação
14.
BMC Genomics ; 20(1): 752, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623552

RESUMO

BACKGROUND: The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining. RESULTS: We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination. CONCLUSIONS: The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.


Assuntos
Genes Bacterianos/genética , Epidemiologia Molecular/métodos , Infecção por Mycobacterium avium-intracellulare/microbiologia , Mycobacterium/genética , Alelos , Animais , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Genética Populacional , Genoma Bacteriano/genética , Genótipo , Humanos , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Filogenia , Recombinação Genética
16.
BMC Res Notes ; 12(1): 313, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159846

RESUMO

OBJECTIVE: Rapid detection and accurate diagnosis are very important in managing active tuberculosis because they provide an advantage in preventing further disease transmission. In accordance with the recommendation of the World Health Organization, the Indonesian Tuberculosis Control Program uses the acid fast bacilli (AFB) smear and Chest X-ray methods as the primary methods for detecting tuberculosis, especially in new cases of suspected tuberculosis. The genus Mycobacterium has many species, strains, and variants, and their natural differences may affect the clinical outcome of the diseases they induce. The purpose of this study was to assess different tuberculosis detection methods as part of serial tests and determine the best diagnostic approach for detecting active lung tuberculosis in Indonesia. RESULTS: This study used clinical samples from tuberculosis patients and assessed them using a series of tests, aiming to increase the sensitivity of active tuberculosis detection. Some samples that yielded negative results in the AFB smear test were detected as positive for Mycobacterium tuberculosis using the nucleic acid amplification test, with a sensitivity of 83.1%. Additionally, nucleic acid amplification also detected positive results among samples assessed as M. tuberculosis-negative using the culture method, this method yielded the same results as the Gene Xpert test.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose/tratamento farmacológico , Adulto , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Indonésia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/diagnóstico , Tuberculose/microbiologia , Tuberculose Pulmonar/microbiologia
17.
Infect Genet Evol ; 74: 103923, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207401

RESUMO

Japan reportedly has high incidence rate of nontuberculous mycobacterial lung disease (14.7 cases per 100,000 person in 2014). In Japan, the most common etiology is Mycobacterium avium subsp. hominissuis (MAH). MAH is a typical inhabitant of the environment, especially bathrooms, which are considered as a potential source of infection. To corroborate this hypothesis, we determined the detection rate of MAH in bathrooms of healthy volunteers by an ordinary culture method and we analyzed the genetic relatedness of these isolates with those from patients and other sources. We collected swabs of bathtub inlets, showerheads, bathroom drains, and shower water from 180 residences throughout Japan. The overall MAH detection rate was 16.1%, but the rate varied among regions: it was high in Kanto (9/34, 26.5%) and Kinki (9/33, 27.3%), but low in Kyushu (0/11, 0%), Tohoku (1/23, 4.3%), and Hokkaido (2/23, 8.7%). MAH was detected primarily in bathtub inlet samples (25 out of 170 residences). Variable numbers of tandem repeats (VNTR) analysis was used to examine the genetic relatedness of 57 MAH isolates from bathrooms of the healthy volunteers with human clinical isolates. A minimum spanning tree generated on the basis of the VNTR data indicated that isolates from the bathrooms of the healthy volunteers had a high degree of genetic relatedness with those from Japanese patients, bathrooms of patients, and river water, but not with those from Russian patients and Japanese pigs. These results showed that bathtub inlets in Japan provide an environmental niche for MAH and suggest that bathrooms are one of the important infection sources of MAH in Japan. Understanding country-specific lifestyle habits, such as bathing in Japan, as well as the genetic diversity of MAH, will help in elucidating the sources of this pathogen.


Assuntos
Pneumopatias/microbiologia , Repetições Minissatélites , Mycobacterium avium/classificação , Rios/microbiologia , DNA Bacteriano/genética , Voluntários Saudáveis , Humanos , Japão , Mycobacterium avium/genética , Mycobacterium avium/isolamento & purificação , Filogeografia , Federação Russa , Microbiologia do Solo , Toaletes , Microbiologia da Água
18.
BMC Res Notes ; 12(1): 341, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208450

RESUMO

OBJECTIVES: Mycolicibacterium peregrinum, a rapidly growing mycobacterial species, can opportunistically infect humans and other animals. Although M. peregrinum infections in animals have been reported, the infection sources are unknown, as is information on its virulence and drug resistant genes, which limits our current understanding of this bacterium. To address this knowledge gap, we obtained draft genome sequences for two M. peregrinum isolates; one from a case of pig lymphadenitis and one from the pig farm's soil. DATA DESCRIPTION: We report here the draft genome sequences of M. peregrinum isolates 131_1 and 138 (6,451,733-bp and 6,479,047-bp). They were isolated from a pig with mesenteric lymph node lymphadenitis and from soil on the Japanese farm where the pig was reared. A sequence alignment identity score of 100% was obtained by in silico DNA-DNA hybridization of the two isolates, while 98.28% (isolate 131_1) and 98.27% (isolate 138) scores were recorded for hybridization with a human isolate. Both isolates carry arr-1, AAC(2')-Ib, RbpA, mtrA and tap drug-resistance genes. Isolates 131_1 and 138 carry 234 and 236 putative virulence genes, respectively. Therefore, environment M. peregrinum is potentially drug resistant and can cause swine lymphadenitis. Our data provides valuable new information for future studies on nontuberculous mycobacteria.


Assuntos
Genoma Bacteriano/genética , Linfadenite/microbiologia , Mycobacteriaceae/genética , Microbiologia do Solo , Doenças dos Suínos/microbiologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Fazendas , Humanos , Japão , Linfadenite/veterinária , Testes de Sensibilidade Microbiana , Mycobacteriaceae/isolamento & purificação , Mycobacteriaceae/patogenicidade , Análise de Sequência de DNA , Suínos , Virulência/genética
19.
mSystems ; 4(4)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239393

RESUMO

A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions.

20.
Sci Rep ; 9(1): 7488, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097761

RESUMO

Antarctic have been suggested as an attractive source for antibiotics discovery and members of Streptomyces genus have historically been studied as natural producers of antimicrobial metabolites. Nonetheless, our knowledge on antibiotic-producing Streptomyces from Antarctic is very limited. In this study, the antimicrobial activity of organic extracts from Antarctic Streptomyces strains was evaluated by disk diffusion assays and minimum inhibitory concentration. The strain Streptomyces sp. So13.3 showed the greatest antibiotic activity (MIC = 15.6 µg/mL) against Gram-positive bacteria and growth reduction of Gram‒negative pathogens. The bioactive fraction in the crude extract was revealed by TLC‒bioautography at Rf = 0.78 with molecular weight between 148 and 624 m/z detected by LC-ESI-MS/MS. The strain So13.3 was taxonomically affiliated as Streptomyces fildesensis. Whole genome sequencing and analysis suggested a 9.47 Mb genome size with 42 predicted biosynthetic gene clusters (BGCs) and 56 putative clusters representing a 22% of total genome content. Interestingly, a large number of them (11 of 42 BGCs and 40 of 56 putative BGCs), did not show similarities with other known BGCs. Our results highlight the potential of the Antarctic Streptomyces strains as a promising source of novel antimicrobials, particularly the strain Streptomyces fildesensis So13.3, which first draft genome is reported in this work.


Assuntos
Anti-Infecciosos/metabolismo , Genoma Bacteriano , Streptomyces/genética , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Streptomyces/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA