Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 56(8): 526-535, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30923172

RESUMO

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.

2.
J Med Genet ; 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287593

RESUMO

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.

3.
Genet Med ; 20(6): 645-654, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29095811

RESUMO

PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics-50% of patients still have no molecular diagnosis after a long and stressful diagnostic "odyssey." Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.


Assuntos
Anormalidades Congênitas/genética , Deficiência Intelectual/genética , Sequenciamento Completo do Exoma/métodos , Bases de Dados Genéticas , Exoma , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Doenças Raras/genética , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
4.
Am J Med Genet C Semin Med Genet ; 175(4): 417-430, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29178447

RESUMO

CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.


Assuntos
Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Estudos de Coortes , Nervos Cranianos/anormalidades , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , França , Testes Genéticos , Humanos , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Adulto Jovem
5.
Eur J Med Genet ; 60(11): 595-604, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28807864

RESUMO

BACKGROUND AND OBJECTIVE: Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to improve turnaround times for sequencing results. METHODS: WES was proposed to 29 patients with severe undiagnosed disorders with developmental abnormalities and faced with medical situations requiring rapid diagnosis. Each family gave consent. The extracted DNA was sequenced on a NextSeq500 (Illumina) instrument. Data were analyzed following standard procedures. Variants were interpreted using in-house software. Each rare variant affecting protein sequences with clinical relevance was tested for familial segregation. RESULTS: The diagnostic rate was 45% (13/29), with a mean turnaround time of 40 days from reception of the specimen to delivery of results to the referring physician. Besides permitting genetic counseling, the rapid diagnosis for positive families led to two pre-natal diagnoses and two inclusions in clinical trials. CONCLUSIONS: This pilot study demonstrated the feasibility of rapid diagnostic WES in our primary genetics center. It reduced the diagnostic odyssey and helped provide support to families.


Assuntos
Exoma , Testes Genéticos/normas , Análise de Sequência de DNA/normas , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Precoce , Feminino , Testes Genéticos/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Fatores de Tempo
6.
J Pediatr ; 185: 160-166.e1, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284480

RESUMO

OBJECTIVE: To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. RESULTS: In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. CONCLUSIONS: Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability.


Assuntos
Agenesia do Corpo Caloso/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 7 , Cromossomos Humanos Par 8 , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
J Med Genet ; 54(7): 479-488, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28119487

RESUMO

BACKGROUND: Cohesinopathies are rare neurodevelopmental disorders arising from a dysfunction in the cohesin pathway, which enables chromosome segregation and regulates gene transcription. So far, eight genes from this pathway have been reported in human disease. STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. This work aimed to identify the phenotype ascribed to STAG1 mutations. METHODS: Among patients referred for intellectual disability (ID) in genetics departments worldwide, array-comparative genomic hybridisation (CGH), gene panel, whole-exome sequencing or whole-genome sequencing were performed following the local diagnostic standards. RESULTS: A mutation in STAG1 was identified in 17 individuals from 16 families, 9 males and 8 females aged 2-33 years. Four individuals harboured a small microdeletion encompassing STAG1; three individuals from two families had an intragenic STAG1 deletion. Six deletions were identified by array-CGH, one by whole-exome sequencing. Whole-exome sequencing found de novo heterozygous missense or frameshift STAG1 variants in eight patients, a panel of genes involved in ID identified a missense and a frameshift variant in two individuals. The 17 patients shared common facial features, with wide mouth and deep-set eyes. Four individuals had mild microcephaly, seven had epilepsy. CONCLUSIONS: We report an international series of 17 individuals from 16 families presenting with syndromic unspecific ID that could be attributed to a STAG1 deletion or point mutation. This first series reporting the phenotype ascribed to mutation in STAG1 highlights the importance of data sharing in the field of rare disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Deficiência Intelectual/genética , Mutação/genética , Proteínas Nucleares/genética , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Síndrome , Sequenciamento Completo do Exoma
8.
Ann Clin Transl Neurol ; 4(1): 26-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28078312

RESUMO

OBJECTIVES: Two consanguineous families, one of Sudanese ethnicity presenting progressive neuromuscular disease, severe cognitive impairment, muscle weakness, upper motor neuron lesion, anhydrosis, facial dysmorphism, and recurrent seizures and the other of Egyptian ethnicity presenting with neonatal hypotonia, bradycardia, and recurrent seizures, were evaluated for the causative gene mutation. METHODS AND RESULTS: Homozygosity mapping and whole exome sequencing (WES) identified damaging homozygous variants in SCN10A, namely c.4514C>T; p.Thr1505Met in the first family and c.4735C>T; p.Arg1579* in the second family. A third family, of Western European descent, included a child with febrile infection-related epilepsy syndrome (FIRES) who also had compound heterozygous missense mutations in SCN10A, namely, c.3482T>C; p.Met1161Thr and c.4709C>A; p.Thr1570Lys. A search for SCN10A variants in three consortia datasets (EuroEPINOMICS, Epi4K/EPGP, Autism/dbGaP) identified an additional five individuals with compound heterozygous variants. A Hispanic male with infantile spasms [c.2842G>C; p.Val948Leu and c.1453C>T; p.Arg485Cys], and a Caucasian female with Lennox-Gastaut syndrome [c.1529C>T; p.Pro510Leu and c.4984G>A; p.Gly1662Ser] in the epilepsy databases and three in the autism databases with [c.4009T>A; p.Ser1337Thr and c.1141A>G; p.Ile381Val], [c.2972C>T; p.Pro991Leu and c.2470C>T; p.His824Tyr], and [c.4009T>A; p.Ser1337Thr and c.2052G>A; p.Met684Ile]. INTERPRETATION: SCN10A is a member of the voltage-gated sodium channel (VGSC) gene family. Sodium channels are responsible for the instigation and proliferation of action potentials in central and peripheral nervous systems. Heterozygous mutations in VGSC genes cause a wide range of epileptic and peripheral nervous system disorders. This report presents autosomal recessive mutations in SCN10A that may be linked to epilepsy-related phenotypes, Lennox-Gastaut syndrome, infantile spasms, and Autism Spectrum Disorder.

9.
Epilepsia ; 57(11): 1858-1869, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665735

RESUMO

OBJECTIVE: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants. METHODS: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search. Two patients were recruited from our early onset epileptic encephalopathy cohort and one patient from personal communication. The 18 patients who have epilepsy in addition to ID are the subject of this study. Information regarding the 18 patients was ascertained by questionnaire provided to the treating clinicians. RESULTS: Six affected individuals had an inherited IQSEC2 variant and 12 had a de novo one (male-to-female ratio, 12:6). The pathogenic variant types were as follows: missense (8), nonsense (5), frameshift (1), intragenic duplications (2), translocation (1), and insertion (1). An epileptic encephalopathy was diagnosed in 9 (50%) of 18 patients. Seizure onset ranged from 8 months to 4 years; seizure types included spasms, atonic, myoclonic, tonic, absence, focal seizures, and generalized tonic-clonic (GTC) seizures. The electroclinical syndromes could be defined in five patients: late-onset epileptic spasms (three) and Lennox-Gastaut or Lennox-Gastaut-like syndrome (two). Seizures were pharmacoresistant in all affected individuals with epileptic encephalopathy. The epilepsy in the other nine patients had a variable age at onset from infancy to 18 years; seizure types included GTC and absence seizures in the hereditary cases and GTC and focal seizures in de novo cases. Seizures were responsive to medical treatment in most cases. All 18 patients had moderate to profound intellectual disability. Developmental regression, autistic features, hypotonia, strabismus, and white matter changes on brain magnetic resonance imaging (MRI) were prominent features. SIGNIFICANCE: The phenotypic spectrum of IQSEC2 disorders includes epilepsy and epileptic encephalopathy. Epileptic encephalopathy is a main clinical feature in sporadic cases. IQSEC2 should be evaluated in both male and female patients with an epileptic encephalopathy.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imagem por Ressonância Magnética , Masculino , Fenótipo , Adulto Jovem
10.
Am J Med Genet A ; 170(8): 2103-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256868

RESUMO

Using targeted next generation sequencing, we have identified a splicing mutation (c.526-9_526-5del) in the SLC9A6 gene in a 9-year-old boy with mild intellectual disability (ID), microcephaly, and social interaction disabilities. This intronic microdeletion leads to the skipping of exon 3 and to an in-frame deletion of 26 amino acids in the TM4 domain. It segregates with cognitive impairment or learning difficulties in other members of the family. Mutations in SLC9A6 have been reported in X-linked Christianson syndrome associating severe to profound intellectual deficiency and an Angelman-like phenotype with microcephaly, absent speech, ataxia with progressive cerebellar atrophy, ophthalmoplegia, epilepsy, and neurological regression. The proband and his maternal uncle both have an attenuated phenotype with mild ID, attention deficit disorder, speech difficulties, and mild asymptomatic cerebellar atrophy. The proband also have microcephaly. The mutation cosegregated with learning disabilities and speech difficulties in the female carriers (mother and three sisters of the proband). Detailed neuropsychological, speech, and occupational therapy investigations in the female carriers revealed impaired oral and written language acquisition, with dissociation between verbal and performance IQ. An abnormal phenotype, ranging from learning disability with predominant speech difficulties to mild intellectual deficiency, has been described previously in a large proportion of female carriers. Besides broadening the clinical spectrum of SLC9A6 gene mutations, we present an example of a monogenic origin of mild learning disability. © 2016 Wiley Periodicals, Inc.


Assuntos
Ataxia/diagnóstico , Ataxia/genética , Epilepsia/diagnóstico , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/genética , Fenótipo , Trocadores de Sódio-Hidrogênio/genética , Adolescente , Adulto , Encéfalo/anormalidades , Criança , Análise Mutacional de DNA , Facies , Família , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Imagem por Ressonância Magnética , Masculino , Linhagem , Sítios de Splice de RNA , Deleção de Sequência , Inativação do Cromossomo X
11.
Eur J Hum Genet ; 24(6): 838-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26395558

RESUMO

Semaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/genética , Deleção Cromossômica , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Criança , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 22/genética , Cromossomos Humanos Par 5/genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Masculino , Herança Paterna , Translocação Genética
12.
Eur J Hum Genet ; 24(6): 911-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26486473

RESUMO

Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective working memory deficits, with borderline intellectual functioning. Further investigations identified a defect in executive function, and auditory-verbal processes. These data were consistent with brain MRI and FDG-PET functional brain imaging, which, when compared with controls, revealed abnormal brain volume and hypometabolism of gray matter structures implicated in working memory. We performed electron microscopy immunogold labeling demonstrating the localization of LRFN2 at synapses of cerebellar and hippocampal rat neurons, often associated with the NR1 subunit of N-methyl-D-aspartate receptors (NMDARs). Altogether, the combined approaches imply a role for LRFN2 in LD, specifically for working memory processes and executive function. In conclusion, the identification of familial cases of clinically homogeneous endophenotypes of LD might help in both the management of patients and genetic counseling for families.


Assuntos
Deleção de Genes , Transtornos de Aprendizagem/genética , Proteínas de Membrana/genética , Transtornos da Memória/genética , Memória de Curto Prazo , Adulto , Animais , Encéfalo/diagnóstico por imagem , Células Cultivadas , Criança , Feminino , Fluordesoxiglucose F18 , Heterozigoto , Humanos , Transtornos de Aprendizagem/complicações , Transtornos de Aprendizagem/diagnóstico , Imagem por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Transtornos da Memória/complicações , Transtornos da Memória/diagnóstico , Linhagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura
13.
Prenat Diagn ; 35(7): 675-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25754886

RESUMO

OBJECTIVES: Conradi-Hünermann-Happle [X-linked dominant chondrodysplasia punctata 2 (CDPX2)] syndrome is a rare X-linked dominant skeletal dysplasia usually lethal in men while affected women show wide clinical heterogeneity. Different EBP mutations have been reported. Severe female cases have rarely been reported, with only six antenatal presentations. METHODS: To better characterize the phenotype in female fetuses, we included nine antenatally diagnosed cases of women with EBP mutations. All cases were de novo except for two fetuses with an affected mother and one case of germinal mosaicism. RESULTS: The mean age at diagnosis was 22 weeks of gestation. The ultrasound features mainly included bone abnormalities: shortening (8/9 cases) and bowing of the long bones (5/9), punctuate epiphysis (7/9) and an irregular aspect of the spine (5/9). Postnatal X-rays and examination showed ichthyosis (8/9) and epiphyseal stippling (9/9), with frequent asymmetric short and bowed long bones. The X-inactivation pattern of the familial case revealed skewed X-inactivation in the mildly symptomatic mother and random X-inactivation in the severe fetal case. Differently affected skin samples of the same fetus revealed different patterns of X-inactivation. CONCLUSION: Prenatal detection of asymmetric shortening and bowing of the long bones and cartilage stippling should raise the possibility of CPDX2 in female fetuses, especially because the majority of such cases involve de novo mutations.


Assuntos
Condrodisplasia Punctata/diagnóstico por imagem , Fenótipo , Índice de Gravidade de Doença , Ultrassonografia Pré-Natal , Condrodisplasia Punctata/genética , Feminino , Marcadores Genéticos , Testes Genéticos , Humanos , Recém-Nascido , Mutação , Gravidez , Segundo Trimestre da Gravidez , Radiografia , Estudos Retrospectivos , Esteroide Isomerases/genética , Inativação do Cromossomo X
14.
J Med Genet ; 51(11): 724-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167861

RESUMO

BACKGROUND: Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. METHODS: We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. RESULTS: We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. CONCLUSIONS: With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Técnicas de Diagnóstico Molecular/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodos , Adulto Jovem
15.
Am J Hum Genet ; 95(1): 113-20, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995870

RESUMO

Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy.


Assuntos
Encefalopatias/genética , Genes Recessivos , Mutação , Convulsões/genética , Simportadores/genética , Encefalopatias/complicações , Feminino , Humanos , Masculino , Linhagem , Convulsões/etiologia
16.
Nat Genet ; 46(5): 503-509, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24686847

RESUMO

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , RNA Helicases DEAD-box/genética , Interferon Tipo I/imunologia , Modelos Moleculares , Mutação/genética , Malformações do Sistema Nervoso/genética , Fenótipo , Transdução de Sinais/genética , Análise de Variância , Doenças Autoimunes do Sistema Nervoso/imunologia , Sequência de Bases , RNA Helicases DEAD-box/química , Ensaio de Desvio de Mobilidade Eletroforética , Exoma/genética , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Malformações do Sistema Nervoso/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise Espectral
17.
Am J Med Genet A ; 164A(6): 1537-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668847

RESUMO

The 15q13.3 heterozygous microdeletion is a fairly common microdeletion syndrome with marked clinical variability and incomplete penetrance. The average size of the deletion, which comprises six genes including CHRNA7, is 1.5 Mb. CHRNA7 has been identified as the gene responsible for the neurological phenotype in this microdeletion syndrome. Only seven patients with a homozygous microdeletion that includes at least CHRNA7, and is inherited from both parents have been described in the literature. The aim of this study was to further describe the distinctive eye manifestations from the analysis in the three French patients diagnosed with the classical 1.5 Mb homozygous microdeletion. Patients' ages ranged from 30 months to 9 years, and included one sib pair. They all displayed a remarkably severe identifiable clinical phenotype that included congenital blindness and convulsive encephalopathy with inconstant abnormal movements. The ophthalmological examination revealed a lack of eye tracking, optic nerve pallor, an immature response with increased latencies with no response to the checkerboard stimulations at the visual evoked potential examination, and a distinctive retina dystrophy with a negative electroretinogram in which the "b" wave was smaller than the "a" wave after a dark adapted pupil and bright flash in all patients. Clear genotype-phenotype correlations emerged, showing that this eye phenotype was secondary to homozygous deletion of TRPM1, the gene responsible for autosomal recessive congenital stationary night blindness. The main differential diagnosis is ceroid lipofuscinosis.


Assuntos
Cegueira/genética , Transtornos Cromossômicos/genética , Deficiência Intelectual/genética , Lipofuscinoses Ceroides Neuronais/genética , Convulsões/genética , Canais de Cátion TRPM/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 15/genética , Eletrorretinografia , Olho/patologia , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/genética , Feminino , Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Miopia/genética , Lipofuscinoses Ceroides Neuronais/patologia , Cegueira Noturna/genética , Nervo Óptico/anormalidades , Distrofias Retinianas/genética , Convulsões/patologia
18.
J Med Genet ; 51(1): 21-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24133203

RESUMO

BACKGROUND: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. METHODS: We report for the first time seven patients with interstitial deletions at the 3q27.3q28 locus gathered through the Decipher database, and suggest this locus as a new microdeletional syndrome. RESULTS: The patients shared a recognisable facial dysmorphism and marfanoid habitus, associated with psychosis and mild to severe intellectual disability (ID). Most of the patients had no delay in gross psychomotor acquisition, but had severe impaired communicative and adaptive skills. Two small regions of overlap were defined. The first one, located on the 3q27.3 locus and common to all patients, was associated with psychotic troubles and mood disorders as well as recognisable facial dysmorphism. This region comprised several candidate genes including SST, considered a candidate for the neuropsychiatric findings because of its implication in interneuronal migration and differentiation processes. A familial case with a smaller deletion allowed us to define a second region of overlap at the 3q27.3q28 locus for marfanoid habitus and severe ID. Indeed, the common morphological findings in the first four patients included skeletal features from the marfanoid spectrum: scoliosis (4/4), long and thin habitus with leanness (average Body Mass Index of 15 (18.5

Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 3 , Deficiência Intelectual/genética , Transtornos do Humor/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Pré-Escolar , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Facies , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Transtornos do Humor/diagnóstico , Fenótipo , Síndrome , Adulto Jovem
19.
Am J Med Genet A ; 164A(3): 789-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357419

RESUMO

In 2007, 250 families with X-linked intellectual disability (XLID) were screened for mutations in genes on the X-chromosome, and in 4 of these families, mutations in the ZDHHC9 gene were identified. The ID was either isolated or associated with a marfanoid habitus. ZDHHC9 encodes a palmitoyl transferase that catalyzes the posttranslational modification of NRAS and HRAS. Since this first description, no additional patient with a ZDHHC9 mutation has been reported in the literature. Here, we describe a large family in which we identified a novel pathogenic ZDHHC9 nonsense mutation (p.Arg298*) by parallel sequencing of all X-chromosome exons. The mutation cosegregated with the clinical phenotype in this family. An 18-year-old patient and his 40-year-old maternal uncle were evaluated. Clinical examination showed normal growth parameters, lingual fasciculation, limited extension of the elbows and metacarpophalangeal joints, and acrocyanosis. There was neither facial dysmorphism nor marfanoid habitus. Brain MRI detected a dysplastic corpus callosum. Neuropsychological testing showed mild intellectual disability. They both displayed generalized anxiety disorder, and the younger patient also suffered from significant behavior impairment that required attention or treatment. Speech evaluation detected satisfactory spoken language since both were able to provide information and to understand conversations of everyday life. Occupational therapy examination showed impaired visual-spatial and visual-motor performance with poor drawing/graphic skills. These manifestations are not specific enough to guide ZDHHC9 screening in patients with ID, and emphasize the value of next generation sequencing for making a molecular diagnosis and genetic counseling in families with XLID.


Assuntos
Aciltransferases/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Adolescente , Adulto , Encéfalo/patologia , Criança , Facies , Evolução Fatal , Humanos , Imagem por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Linhagem , Adulto Jovem
20.
Eur J Hum Genet ; 21(7): 736-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23188044

RESUMO

Cohen syndrome (CS) is a rare autosomal recessive condition caused by mutations and/or large rearrangements in the VPS13B gene. CS clinical features, including developmental delay, the typical facial gestalt, chorioretinal dystrophy (CRD) and neutropenia, are well described. CS diagnosis is generally raised after school age, when visual disturbances lead to CRD diagnosis and to VPS13B gene testing. This relatively late diagnosis precludes accurate genetic counselling. The aim of this study was to analyse the evolution of CS facial features in the early period of life, particularly before school age (6 years), to find clues for an earlier diagnosis. Photographs of 17 patients with molecularly confirmed CS were analysed, from birth to preschool age. By comparing their facial phenotype when growing, we show that there are no special facial characteristics before 1 year. However, between 2 and 6 years, CS children already share common facial features such as a short neck, a square face with micrognathia and full cheeks, a hypotonic facial appearance, epicanthic folds, long ears with an everted upper part of the auricle and/or a prominent lobe, a relatively short philtrum, a small and open mouth with downturned corners, a thick lower lip and abnormal eye shapes. These early transient facial features evolve to typical CS facial features with aging. These observations emphasize the importance of ophthalmological tests and neutrophil count in children in preschool age presenting with developmental delay, hypotonia and the facial features we described here, for an earlier CS diagnosis.


Assuntos
Face/fisiopatologia , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Miopia/diagnóstico , Miopia/genética , Obesidade/diagnóstico , Obesidade/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Diagnóstico Precoce , Feminino , Dedos/anormalidades , Dedos/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Hipotonia Muscular/fisiopatologia , Mutação , Miopia/fisiopatologia , Obesidade/fisiopatologia , Fenótipo , Degeneração Retiniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA