Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11349, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790766

RESUMO

Following significant advances in image acquisition, synapse detection, and neuronal segmentation in connectomics, researchers have extracted an increasingly diverse set of wiring diagrams from brain tissue. Neuroscientists frequently represent these wiring diagrams as graphs with nodes corresponding to a single neuron and edges indicating synaptic connectivity. The edges can contain "colors" or "labels", indicating excitatory versus inhibitory connections, among other things. By representing the wiring diagram as a graph, we can begin to identify motifs, the frequently occurring subgraphs that correspond to specific biological functions. Most analyses on these wiring diagrams have focused on hypothesized motifs-those we expect to find. However, one of the goals of connectomics is to identify biologically-significant motifs that we did not previously hypothesize. To identify these structures, we need large-scale subgraph enumeration to find the frequencies of all unique motifs. Exact subgraph enumeration is a computationally expensive task, particularly in the edge-dense wiring diagrams. Furthermore, most existing methods do not differentiate between types of edges which can significantly affect the function of a motif. We propose a parallel, general-purpose subgraph enumeration strategy to count motifs in the connectome. Next, we introduce a divide-and-conquer community-based subgraph enumeration strategy that allows for enumeration per brain region. Lastly, we allow for differentiation of edges by types to better reflect the underlying biological properties of the graph. We demonstrate our results on eleven connectomes and publish for future analyses extensive overviews for the 26 trillion subgraphs enumerated that required approximately 9.25 years of computation time.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Neurônios , Editoração , Sinapses
2.
IEEE Trans Med Imaging ; 41(9): 2360-2370, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35377840

RESUMO

As connectomic datasets exceed hundreds of terabytes in size, accurate and efficient skeleton generation of the label volumes has evolved into a critical component of the computation pipeline used for analysis, evaluation, visualization, and error correction. We propose a novel topological thinning strategy that uses biological-constraints to produce accurate centerlines from segmented neuronal volumes while still maintaining biologically relevant properties. Current methods are either agnostic to the underlying biology, have non-linear running times as a function of the number of input voxels, or both. First, we eliminate from the input segmentation biologically-infeasible bubbles, pockets of voxels incorrectly labeled within a neuron, to improve segmentation accuracy, allow for more accurate centerlines, and increase processing speed. Next, a Convolutional Neural Network (CNN) detects cell bodies from the input segmentation, allowing us to anchor our skeletons to the somata. Lastly, a synapse-aware topological thinning approach produces expressive skeletons for each neuron with a nearly one-to-one correspondence between endpoints and synapses. We simultaneously estimate geometric properties of neurite width and geodesic distance between synapse and cell body, improving accuracy by 47.5% and 62.8% over baseline methods. We separate the skeletonization process into a series of computation steps, leveraging data-parallel strategies to increase throughput significantly. We demonstrate our results on over 1250 neurons and neuron fragments from three different species, processing over one million voxels per second per CPU with linear scalability.


Assuntos
Conectoma , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Esqueleto
3.
Comput Vis ECCV ; 12363: 103-120, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33345257

RESUMO

For large-scale vision tasks in biomedical images, the labeled data is often limited to train effective deep models. Active learning is a common solution, where a query suggestion method selects representative unlabeled samples for annotation, and the new labels are used to improve the base model. However, most query suggestion models optimize their learnable parameters only on the limited labeled data and consequently become less effective for the more challenging unlabeled data. To tackle this, we propose a two-stream active query suggestion approach. In addition to the supervised feature extractor, we introduce an unsupervised one optimized on all raw images to capture diverse image features, which can later be improved by fine-tuning on new labels. As a use case, we build an end-to-end active learning framework with our query suggestion method for 3D synapse detection and mitochondria segmentation in connectomics. With the framework, we curate, to our best knowledge, the largest connectomics dataset with dense synapses and mitochondria annotation. On this new dataset, our method outperforms previous state-of-the-art methods by 3.1% for synapse and 3.8% for mitochondria in terms of region-of-interest proposal accuracy. We also apply our method to image classification, where it outperforms previous approaches on CIFAR-10 under the same limited annotation budget. The project page is https://zudi-lin.github.io/projects/#two_stream_active.

4.
IEEE Trans Vis Comput Graph ; 25(10): 3011-3031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30059307

RESUMO

Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems' roadmaps in the coming years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...