*Sci Rep ; 10(1): 1751, 2020 Feb 04.*

##### RESUMO

We explore the problem of projecting the ground-state of an ultra-strong-coupled circuit-QED system into a non-energy-eigenstate. As a measurement apparatus we consider a nonlinear driven resonator. We find that the post-measurement state of the nonlinear resonator exhibits a large correlation with the post-measurement state of the ultra-strongly coupled system even when the coupling between measurement device and system is much smaller than the energy scales of the system itself. While the projection is imperfect, we argue that because of the strong nonlinear response of the resonator it works in a practical regime where a linear measurement apparatus would fail.

*Phys Rev Lett ; 120(14): 140501, 2018 Apr 06.*

##### RESUMO

Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T. On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1/T. However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1/T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1/T for an arbitrary time scale under the effect of dephasing. We use one-way quantum-computing-based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.

*Nat Commun ; 9: 16202, 2018 03 29.*

##### RESUMO

This corrects the article DOI: 10.1038/ncomms4524.

*Phys Rev Lett ; 117(21): 210503, 2016 Nov 18.*

##### RESUMO

The hybridization of distinct quantum systems is now seen as an effective way to engineer the properties of an entire system leading to applications in quantum metamaterials, quantum simulation, and quantum metrology. Recent improvements in both fabrication techniques and qubit design have allowed the community to consider coupling large ensembles of artificial atoms, such as superconducting qubits, to a resonator. Here, we demonstrate the coherent coupling between a microwave resonator and a macroscopic ensemble composed of several thousand superconducting flux qubits, where we observe a large dispersive frequency shift in the spectrum of 250 MHz. We achieve the large dispersive shift with a collective enhancement of the coupling strength between the resonator and qubits. These results represent the largest number of coupled superconducting qubits realized so far.

*Nat Commun ; 7: 13253, 2016 11 04.*

##### RESUMO

Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by â¼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a â¼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

*Phys Rev Lett ; 115(17): 170801, 2015 Oct 23.*

##### RESUMO

Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

*Phys Rev Lett ; 114(12): 120501, 2015 Mar 27.*

##### RESUMO

In this Letter, we propose a counterintuitive use of a hybrid system where the coherence time of a quantum system can be significantly improved by coupling it with a system of a shorter coherence time. Coupling a two-level system with a single nitrogen-vacancy (NV^{-}) center, a dark state of the NV^{-} center naturally forms after the hybridization. We show that this dark state becomes robust against noise due to the coupling even when the coherence time of the two-level system is much shorter than that of the NV^{-} center. Our proposal opens a new way to use a quantum hybrid system for the realization of robust quantum information processing.

*Nat Commun ; 5: 3424, 2014 Apr 08.*

##### RESUMO

The hybridization of distinct quantum systems has opened new avenues to exploit the best properties of these individual systems. Superconducting circuits and electron spin ensembles are one such example. Strong coupling and the coherent transfer and storage of quantum information has been achieved with nitrogen vacancy centres in diamond. Recently, we have observed a remarkably sharp resonance (~1 MHz) at 2.878 GHz in the spectrum of flux qubit negatively charged nitrogen vacancy diamond hybrid quantum system under zero external magnetic field. This width is much narrower than that of both the flux qubit and spin ensemble. Here we show that this resonance is evidence of a collective dark state in the ensemble, which is coherently driven by the superposition of clockwise and counter-clockwise macroscopic persistent supercurrents flowing in the flux qubit. The collective dark state is a unique physical system and could provide a long-lived quantum memory.

*Phys Rev Lett ; 111(10): 107008, 2013 Sep 06.*

##### RESUMO

We have built a hybrid system composed of a superconducting flux qubit (the processor) and an ensemble of nitrogen-vacancy centers in diamond (the memory) that can be directly coupled to one another, and demonstrated how information can be transferred from the flux qubit to the memory, stored, and subsequently retrieved. We have established the coherence properties of the memory and succeeded in creating an entangled state between the processor and memory, demonstrating how the entangled state's coherence is preserved. Our results are a significant step towards using an electron spin ensemble as a quantum memory for superconducting qubits.

*Phys Rev Lett ; 104(5): 050501, 2010 Feb 05.*

##### RESUMO

The creation of complex entangled states, resources that enable quantum computation, can be achieved via simple "probabilistic" operations which are individually likely to fail. However, typical proposals exploiting this idea carry a severe overhead in terms of the accumulation of errors. Here, we describe a method that can rapidly generate large entangled states with an error accumulation that depends only logarithmically on the failure probability. We find that the approach may be practical for success rates in the sub-10% range. The assumptions that we make, including parallelism and high connectivity, are appropriate for real systems including those based on measurement-induced entanglement. This result therefore indicates the feasibility of such devices.