Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519842

RESUMO

The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.

2.
Chem Soc Rev ; 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452481

RESUMO

The different polymorphic phases of transition metal dichalcogenides (TMDs) have attracted enormous interest in the last decade. The metastable metallic and small band gap phases of group VI TMDs displayed leading performance for electrocatalytic hydrogen evolution, high volumetric capacitance and some of them exhibit large gap quantum spin Hall (QSH) insulating behaviour. Metastable 1T(1T') phases require higher formation energy, as compared to the thermodynamically stable 2H phase, thus in standard chemical vapour deposition and vapour transport processes the materials normally grow in the 2H phases. Only destabilization of their 2H phase via external means, such as charge transfer or high electric field, allows the conversion of the crystal structure into the 1T(1T') phase. Bottom-up synthesis of materials in the 1T(1T') phases in measurable quantities would broaden their prospective applications and practical utilization. There is an emerging evidence that some of these 1T(1T') phases can be directly synthesized via bottom-up vapour- and liquid-phase methods. This review will provide an overview of the synthesis strategies which have been designed to achieve the crystal phase control in TMDs, and the chemical mechanisms that can drive the synthesis of metastable phases. We will provide a critical comparison between growth pathways in vapour- and liquid-phase synthesis techniques. Morphological and chemical characteristics of synthesized materials will be described along with their ability to act as electrocatalysts for the hydrogen evolution reaction from water. Phase stability and reversibility will be discussed and new potential applications will be introduced. This review aims at providing insights into the fundamental understanding of the favourable synthetic conditions for the stabilization of metastable TMD crystals and at stimulating future advancements in the field of large-scale synthesis of materials with crystal phase control.

3.
Chemistry ; 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142591

RESUMO

Graphite intercalation compounds (GICs) are often used to produce exfoliated or functionalised graphene related materials (GRMs) in a specific solvent. This study explores the formation of the Na-tetrahydrofuran (THF)-GIC and a new ternary system based on dimethylacetamide (DMAc). Detailed comparisons of in situ temperature dependent XRD with TGA-MS and Raman measurements reveal a series of dynamic transformations during heating. Surprisingly, the bulk of the intercalation compound is stable under ambient conditions, trapped between the graphene sheets. The heating process drives a reorganisation of the solvent and Na molecules, then an evaporation of the solvent; however, the solvent loss is arrested by restacking of the graphene layers, leading to trapped solvent bubbles. Eventually, the bubbles rupture, releasing the remaining solvent and creating expanded graphite. These trapped dopants may provide useful property enhancements, but also potentially confound measurements of grafting efficiency in liquid-phase covalent functionalization experiments on 2D materials.

4.
ACS Nano ; 13(12): 14468-14476, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31774276

RESUMO

We report on spin transport in WS2-based 2D-magnetic tunnel junctions (2D-MTJs), unveiling a band structure spin filtering effect specific to the transition metal dichalcogenides (TMDCs) family. WS2 mono-, bi-, and trilayers are derived by a chemical vapor deposition process and further characterized by Raman spectroscopy, atomic force microscopy (AFM), and photoluminescence spectroscopy. The WS2 layers are then integrated in complete Co/Al2O3/WS2/Co MTJ hybrid spin-valve structures. We make use of a tunnel Co/Al2O3 spin analyzer to probe the extracted spin-polarized current from the WS2/Co interface and its evolution as a function of WS2 layer thicknesses. For monolayer WS2, our technological approach enables the extraction of the largest spin signal reported for a TMDC-based spin valve, corresponding to a spin polarization of PCo/WS2 = 12%. Interestingly, for bi- and trilayer WS2, the spin signal is reversed, which indicates a switch in the mechanism of interfacial spin extraction. With the support of ab initio calculations, we propose a model to address the experimentally measured inversion of the spin polarization based on the change in the WS2 band structure while going from monolayer (direct bandgap) to bilayer (indirect bandgap). These experiments illustrate the rich potential of the families of semiconducting 2D materials for the control of spin currents in 2D-MTJs.

5.
Nat Commun ; 10(1): 712, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755619

RESUMO

Crystal phase control in layered transition metal dichalcogenides is central for exploiting their different electronic properties. Access to metastable crystal phases is limited as their direct synthesis is challenging, restricting the spectrum of reachable materials. Here, we demonstrate the solution phase synthesis of the metastable distorted octahedrally coordinated structure (1T' phase) of WSe2 nanosheets. We design a kinetically-controlled regime of colloidal synthesis to enable the formation of the metastable phase. 1T' WSe2 branched few-layered nanosheets are produced in high yield and in a reproducible and controlled manner. The 1T' phase is fully convertible into the semiconducting 2H phase upon thermal annealing at 400 °C. The 1T' WSe2 nanosheets demonstrate a metallic nature exhibited by an enhanced electrocatalytic activity for hydrogen evolution reaction as compared to the 2H WSe2 nanosheets and comparable to other 1T' phases. This synthesis design can potentially be extended to different materials providing direct access of metastable phases.

6.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30095209

RESUMO

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

7.
ACS Omega ; 3(8): 8655-8662, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458996

RESUMO

Monolayer TiS2 is the lightest member of the transition metal dichalcogenide family with promising applications in energy storage and conversion systems. The use of TiS2 has been limited by the lack of rapid characterization of layer numbers via Raman spectroscopy and its easy oxidation in wet environment. Here, we demonstrate the layer-number-dependent Raman modes for TiS2. 1T TiS2 presents two characteristics of the Raman active modes, A1g (out-of-plane) and Eg (in-plane). We identified a characteristic peak frequency shift of the Eg mode with the layer number and an unexplored Raman mode at 372 cm-1 whose intensity changes relative to the A1g mode with the thickness of the TiS2 sheets. These two characteristic features of Raman spectra allow the determination of layer numbers between 1 and 5 in exfoliated TiS2. Further, we develop a method to produce oxidation-resistant inks of micron-sized mono- and few-layered TiS2 nanosheets at concentrations up to 1 mg/mL. These TiS2 inks can be deposited to form thin films with controllable thickness and nanosheet density over square centimeter areas. This opens up pathways for a wider utilization of exfoliated TiS2 toward a range of applications.

8.
Sci Rep ; 7(1): 14911, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097769

RESUMO

The rise of atomically thin materials has the potential to enable a paradigm shift in modern technologies by introducing multi-functional materials in the semiconductor industry. To date the growth of high quality atomically thin semiconductors (e.g. WS2) is one of the most pressing challenges to unleash the potential of these materials and the growth of mono- or bi-layers with high crystal quality is yet to see its full realization. Here, we show that the novel use of molecular precursors in the controlled synthesis of mono- and bi-layer WS2 leads to superior material quality compared to the widely used direct sulfidization of WO3-based precursors. Record high room temperature charge carrier mobility up to 52 cm2/Vs and ultra-sharp photoluminescence linewidth of just 36 meV over submillimeter areas demonstrate that the quality of this material supersedes also that of naturally occurring materials. By exploiting surface diffusion kinetics of W and S species adsorbed onto a substrate, a deterministic layer thickness control has also been achieved promoting the design of scalable synthesis routes.

9.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295639

RESUMO

Transient currents in atomically thin MoTe2 field-effect transistors (FETs) are measured during cycles of pulses through the gate electrode. The curves of the transient currents are analyzed in light of a newly proposed model for charge-trapping dynamics that renders a time-dependent change in the threshold voltage as the dominant effect on the channel hysteretic behavior over emission currents from the charge traps. The proposed model is expected to be instrumental in understanding the fundamental physics that governs the performance of atomically thin FETs and is applicable to the entire class of atomically thin-based devices. Hence, the model is vital to the intelligent design of fast and highly efficient optoelectronic devices.

10.
ACS Appl Mater Interfaces ; 8(9): 5961-71, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26864503

RESUMO

In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER.

11.
Sci Rep ; 5: 13712, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26348898

RESUMO

Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 µm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 µm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls.

12.
Nat Commun ; 5: 4328, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24999766

RESUMO

The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm(-3)) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities.

13.
Nano Lett ; 13(11): 5692-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147584

RESUMO

The epitaxial growth of graphene on copper foils is a complex process, influenced by thermodynamic, kinetic, and growth parameters, often leading to diverse island shapes including dendrites, squares, stars, hexagons, butterflies, and lobes. Here, we introduce a phase-field model that provides a unified description of these diverse growth morphologies and compare the model results with new experiments. Our model explicitly accounts for the anisotropies in the energies of growing graphene edges, kinetics of attachment of carbon at the edges, and the crystallinity of the underlying copper substrate (through anisotropy in surface diffusion). We show that anisotropic diffusion has a very important, counterintuitive role in the determination of the shape of islands, and we present a "phase diagram" of growth shapes as a function of growth rate for different copper facets. Our results are shown to be in excellent agreement with growth shapes observed for high symmetry facets such as (111) and (001) as well as for high-index surfaces such as (221) and (310).


Assuntos
Carbono/química , Cobre/química , Grafite/química , Anisotropia , Cinética , Nanotecnologia , Propriedades de Superfície , Termodinâmica
14.
Nanoscale ; 5(24): 12365-74, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24162721

RESUMO

Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 µm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 ± 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.

15.
Phys Chem Chem Phys ; 15(15): 5395-9, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400254

RESUMO

In this article, we use optical transmission spectroscopy to measure the changes in the resonance features of a Au plasmonic nanoresonator array consisting of concentric ring/disc cavity elements, when graphene is introduced as an encapsulating medium. We show that by using finite element modelling to best reproduce our experimental results the dielectric response of the graphene film can be determined. We discuss the potential of such structures for chemical sensing applications.

16.
Nanotechnology ; 23(34): 344017, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22885685

RESUMO

We report the fabrication, at low-temperature, of solution processed graphene transistors based on carefully engineered graphene/organic dielectric interfaces. Graphene transistors based on these interfaces show improved performance and reliability when compared with traditional SiO(2) based devices. The dielectric materials investigated include Hyflon AD (Solvay), a low-k fluoropolymer, and various organic self-assembled monolayer (SAM) nanodielectrics. Both types of dielectric are solution processed and yield graphene transistors with similar operating characteristics, namely high charge carrier mobility, hysteresis free operation, negligible doping effect and improved operating stability as compared to bare SiO(2) based devices. Importantly, the use of SAM nanodielectrics enables the demonstration of low operating voltage ( < |1.5| V), solution-processable and flexible graphene transistors with tunable doping characteristics through molecular engineering of the SAM's molecular length and terminal group. The work is a significant step towards graphene microelectronics where large-volume and low-temperature processing are required.

17.
ACS Nano ; 6(4): 3614-23, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22443380

RESUMO

The synthesis of wafer-scale single crystal graphene remains a challenge toward the utilization of its intrinsic properties in electronics. Until now, the large-area chemical vapor deposition of graphene has yielded a polycrystalline material, where grain boundaries are detrimental to its electrical properties. Here, we study the physicochemical mechanisms underlying the nucleation and growth kinetics of graphene on copper, providing new insights necessary for the engineering synthesis of wafer-scale single crystals. Graphene arises from the crystallization of a supersaturated fraction of carbon-adatom species, and its nucleation density is the result of competition between the mobility of the carbon-adatom species and their desorption rate. As the energetics of these phenomena varies with temperature, the nucleation activation energies can span over a wide range (1-3 eV) leading to a rational prediction of the individual nuclei size and density distribution. The growth-limiting step was found to be the attachment of carbon-adatom species to the graphene edges, which was independent of the Cu crystalline orientation.

18.
J Phys Chem Lett ; 3(6): 772-7, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26286289

RESUMO

Reduction of graphene oxide (GO) at low temperature and atmospheric pressure via plasma-assisted chemistry is demonstrated. Hydrogen gas is continuously dissociated in a microplasma to generate atomic hydrogen, which flows from the remote plasma to thin films of GO deposited on a substrate. Direct interaction with ions and other energetic species is avoided to mitigate ion-induced sputter removal or damage. The residual oxygen content and structure of the GO films after plasma treatment is systematically characterized at different temperatures and correlated to the conductivity of the films. For example, at 150 °C, we find that the plasma-reduced GO contains less than 12.5% oxygen and exhibits a sheet resistance of 4.77 × 10(4) Ω/sq, as compared with thermal reduction alone, which results in 22.9% oxygen and a sheet resistance of 2.14 × 10(6) Ω/sq. Overall, the effective removal of oxygen functional groups by atomic hydrogen enables large-scale applications of GO as flexible conductors to be realized.

19.
ACS Nano ; 4(10): 5861-8, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20886867

RESUMO

A detailed in situ infrared spectroscopy analysis of single layer and multilayered graphene oxide (GO) thin films reveals that the normalized infrared absorption in the carbonyl region is substantially higher in multilayered GO upon mild annealing. These results highlight the fact that the reduction chemistry of multilayered GO is dramatically different from the single layer GO due to the presence of water molecules confined in the ∼1 nm spacing between sheets. IR spectroscopy, XPS analysis, and DFT calculations all confirm that the water molecules play a significant role interacting with basal plane etch holes through passivation, via evolution of CO(2) leading to the formation of ketone and ester carbonyl groups. Displacement of water from intersheet spacing with alcohol significantly changes the chemistry of carbonyl formation with temperature.


Assuntos
Grafite/química , Nanotecnologia/métodos , Óxidos/química , Água/química , Carbono/química , Dióxido de Carbono/química , Ésteres/química , Cetonas/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície , Temperatura
20.
Nat Chem ; 2(7): 581-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20571578

RESUMO

The excellent electrical, optical and mechanical properties of graphene have driven the search to find methods for its large-scale production, but established procedures (such as mechanical exfoliation or chemical vapour deposition) are not ideal for the manufacture of processable graphene sheets. An alternative method is the reduction of graphene oxide, a material that shares the same atomically thin structural framework as graphene, but bears oxygen-containing functional groups. Here we use molecular dynamics simulations to study the atomistic structure of progressively reduced graphene oxide. The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene. The calculations are supported by infrared and X-ray photoelectron spectroscopy measurements. Finally, more effective reduction treatments to improve the reduction of graphene oxide are proposed.


Assuntos
Óxidos/química , Carbono/química , Modelos Químicos , Simulação de Dinâmica Molecular , Oxirredução , Espectroscopia Fotoeletrônica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA