Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(22): 10184-10197, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368907

RESUMO

In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.

2.
Phys Chem Chem Phys ; 22(22): 12373-12381, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309827

RESUMO

In spite of their remarkable luminescence properties, benzothioxanthene imide (BTXI, an imide containing rylene chromophores) derivatives have been largely overlooked compared to their perylene bisimide and naphthalene bisimide counterparts. Thus, their detailed photophysics are much less understood. In this paper, we show how relatively simple structural modifications of the backbone of BTXIs can lead to impressive variations in their inter-system crossing kinetics. Thus, through rational engineering of their structure, it is possible to obtain a triplet formation quantum yield that reaches unity, making BTXI a promising class of compounds for triplet-based applications (photodynamic therapy, electroluminescence, etc.).

3.
Chemphyschem ; 21(10): 1036-1043, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32176399

RESUMO

Cationic lanthanide complexes are generally able to spontaneously internalize into living cells. Following our previous works based on a diMe-cyclen framework, a second generation of cationic water-soluble lanthanide complexes based on a constrained cross-bridged cyclam macrocycle functionalized with donor-π-conjugated picolinate antennas was prepared with europium(III) and ytterbium(III). Their spectroscopic properties were thoroughly investigated in various solvents and rationalized with the help of DFT calculations. A significant improvement was observed in the case of the Eu3+ complex, while the Yb3+ analogue conserved photophysical properties in aqueous solvent. Two-photon (2P) microscopy imaging experiments on living T24 human cancer cells confirmed the spontaneous internalization of the probes and images with good signal-to-noise ratio were obtained in the classic NIR-to-visible configuration with the Eu3+ luminescent bioprobe and in the NIR-to-NIR with the Yb3+ one.

4.
Chemistry ; 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31943417

RESUMO

A textbook dysprosium dinuclear complex based on acetylacetone ligands, [Dy2 (acac)4 (µ2 -acac)2 (H2 O)2 ], has been synthesized and fully characterized. This simple dimeric lanthanide complex shows well-resolved solid-state luminescence and behaves as a single-molecule magnet under zero DC field. A seminal crystal-field approach is used to marry both magnetism and luminescence in the frame of an energetic picture.

5.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979347

RESUMO

The reaction between the 2,2'-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate triad (H2SQ) and the metallo-precursor [Yb(hfac)3]2H2O led to the formation of a dinuclear coordination complex of formula [Yb2(hfac)6(H2SQ)]0.5CH2Cl2 (H2SQ-Yb). After chemical oxidation of H2SQ in 2,2'-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-tert-butyl-1,3-benzodithiole-5,6-dione (Q), the latter triad reacted with the [Yb(hfac)3]2H2O precursor to give the dinuclear complex of formula [Yb2(hfac)6(Q)] (Q-Yb). Both dinuclear compounds have been characterized by X-ray diffraction, DFT optimized structure and electronic absorption spectra. They behaved as field-induced Single-Molecule Magnets (SMMs) nevertheless the chemical oxidation of the semiquinone to quinone moieties accelerated by a factor of five the relaxation time of the magnetization of Q-Yb compared to the one for H2SQ-Yb. The H2SQ triad efficiently sensitized the YbIII luminescence while the chemical oxidation of H2SQ into Q induced strong modification of the absorption properties and thus a quenching of the YbIII luminescence for Q-Yb. In other words, both magnetic modulation and luminescence quenching are reached by the oxidation of the protonated semiquinone into quinone.

6.
Inorg Chem ; 59(2): 1306-1314, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909995

RESUMO

In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media. Moreover, the system does not produce singlet oxygen upon excitation, which would be toxic for tissues. The relaxivity obtained is high at intermediate fields (16.1 mM-1 s-1 at 20 MHz and 310 K) and competes with that of bigger or more rigid systems. A full relaxometric and 17O NMR study and fitting of the data using the Lipari-Szabo approach showed that this high relaxivity can be explained by the size of the system and the presence of some small aggregates. These optimized photophysical and relaxometric properties highlight the potential use of such systems for future bimodal imaging studies.

7.
J Inorg Biochem ; 205: 110978, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31951911

RESUMO

Based on our previous works involving two 1,4,7-triazacyclononane (tacn)-based ligands Hno2py1pa (1-Picolinic acid-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane) and Hno1pa (1-Picolinic acid-1,4,7-triazacyclononane), we report here the synthesis of analogues bearing picolinate-based π-conjugated ILCT (Intra-Ligand Charge Transfer) transition antenna (HL1, HL2), using regiospecific N-functionalization of the tacn skeleton and their related transition metal complexes (e.g. Cu2+, Zn2+ and Mn2+). Coordination properties as well as their photophysical and electrochemical properties were investigated in order to quantify the impact of such antenna on the luminescent or relaxometric properties of the complexes. The spectroscopic properties of the targeted ligands and metal complexes have been studied using UV-Vis absorption and fluorescence spectrocopies. While the zinc complex formed with HL1 possesses a moderate quantum yield of 5%, complexation of Cu2+ led to an extinction of the luminescence putatively attributed to a photo-induced electron transfer, as supported by spectroscopic and electrochemical evidences. The [Mn(L2)]+ complex is characterized by a fluorescence quantum yield close to 8% in CH2Cl2. The potential interest of such systems as bimodal probes has been assessed from radiolabeling experiments conducted on HL1 and 64Cu2+ as well as confocal microscopy analyses and from relaxometric studies carried out on the cationic [Mn(L2)]+ complex. These results showed that HL1 can be used for radiolabeling, with a radiochemical conversion of 40% in 15 min at 100 °C. Finally, the relaxivity values obtained for [Mn(L2)]+, r1p = 4.80 mM-1·s-1 and r2p = 8.72 mM-1·s-1, make the Mn(II) complex an ideal candidate as a probe for Magnetic Resonance Imaging.

8.
J Am Chem Soc ; 141(51): 20026-20030, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31820955

RESUMO

With the help of a judicious association between dithienylethene (DTE) units, an ytterbium ion, and a ruthenium carbon-rich complex, we describe (i) the efficient (on/off) switching of pure NIR luminescence with a photochromic unit absorbing in the UV range and (ii) the association of electrochemical and photochemical control of this NIR emission in a single system with nondestructive readout.

9.
J Appl Crystallogr ; 52(Pt 4): 722-731, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31396026

RESUMO

Obtaining crystals and solving the phase problem remain major hurdles encountered by bio-crystallographers in their race to obtain new high-quality structures. Both issues can be overcome by the crystallophore, Tb-Xo4, a lanthanide-based molecular complex with unique nucleating and phasing properties. This article presents examples of new crystallization conditions induced by the presence of Tb-Xo4. These new crystalline forms bypass crystal defects often encountered by crystallographers, such as low-resolution diffracting samples or crystals with twinning. Thanks to Tb-Xo4's high phasing power, the structure determination process is greatly facilitated and can be extended to serial crystallography approaches.

10.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186360

RESUMO

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Assuntos
Biomassa , Mudança Climática , Oceanos e Mares , Animais , Organismos Aquáticos/fisiologia , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Cadeia Alimentar , Modelos Teóricos
11.
Bioconjug Chem ; 30(6): 1649-1657, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136151

RESUMO

Endotoxin (lipooligosaccharide, LOS, and lipopolysaccharide, LPS) is the major molecular component of Gram-negative bacteria outer membrane, and very potent pro-inflammatory substance. Visualizing and tracking the distribution of the circulating endotoxin is one of the fundamental approaches to understand the molecular aspects of infection with subsequent inflammatory and immune responses, LPS also being a key player in the molecular dialogue between microbiota and host. While fluorescently labeled LPS has previously been used to track its subcellular localization and colocalization with TLR4 receptor and downstream effectors, our knowledge on lipopolysaccharide (LOS) localization and cellular activity remains almost unexplored. In this study, LOS was labeled with a novel fluorophore, Cy7N, featuring a large Stokes-shifted emission in the deep-red spectrum resulting in lower light scattering and better imaging contrast. The LOS-Cy7N chemical identity was determined by mass spectrometry, and immunoreactivity of the conjugate was evaluated. Interestingly, its application to microscopic imaging showed a faster cell internalization compared to LPS-Alexa488, despite that it is also CD14-dependent and undergoes the same endocytic pathway as LPS toward lysosomal detoxification. Our results suggest the use of the new infrared fluorophore Cy7N for cell imaging of labeled LOS by confocal fluorescence microscopy, and propose that LOS is imported in the cells by mechanisms different from those responsible for LPS uptake.


Assuntos
Bactérias/metabolismo , Carbocianinas/química , Lipopolissacarídeos/síntese química , Microscopia/métodos , Endocitose , Corantes Fluorescentes/química , Técnicas In Vitro , Receptor 4 Toll-Like/metabolismo
12.
Chemistry ; 25(38): 9026-9034, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972809

RESUMO

Two trispicolinate 1,4,7-triazacyclonane (TACN)-based ligands bearing three picolinate biphotonic antennae were synthetized and their Yb3+ and Gd3+ complexes isolated. One series differs from the other by the absence (L1 )/presence (L2 ) of bromine atoms on the antenna backbone, offering respectively improved optical and singlet-oxygen generation properties. Photophysical properties of the ligands, complexes and micellar Pluronic suspensions were investigated. Complexes exhibit high two-photon absorption cross-section combined either with NIR emission (Yb) or excellent 1 O2 generation (Gd). The very large intersystem crossing efficiency induced by the combination of bromine atom and heavy rare-earth element was corroborated with theoretical calculations. The 1 O2 generation properties of L2 Gd micellar suspension under two-photon activation leads to tumour cell death, suggesting the potential of such structures for theranostic applications.

13.
Inorg Chem ; 58(4): 2872-2880, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30726073

RESUMO

The tailoring of the coordination chemistry around f-element centers is a crucial step for the development of compounds with slow magnetic relaxation, including single-molecule magnets (SMMs), which have great potential in molecular spintronics and for future quantum computing devices. Lanthanide ions are particularly interesting because the predominant electrostatic model of their bonding allows rationalizing their coordination symmetry. However, to the best of our knowledge, the redox properties of the lanthanides are not taken into account for the design of SMMs, and therefore all SMMs reported to date contain lanthanide ions in their trivalent oxidation state. In this Article, divalent lanthanide compounds presenting field-induced slow magnetic relaxation are reported. The rational design and synthesis of two TmII complexes with the 18-crown-6 ligand are presented along with their emission and EPR properties, which help to probe the desired nature of the ground state, that is, maximizing the anisotropy. The observed magnetic properties demonstrate their slow magnetic relaxation behavior in a moderate external magnetic field.

14.
Glob Chang Biol ; 25(2): 459-472, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30408274

RESUMO

Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio-economic impacts on ecosystem services, marine fisheries, and fishery-dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%-30% (±12%-17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%-80% (±35%-200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size-classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.


Assuntos
Organismos Aquáticos/fisiologia , Biomassa , Mudança Climática , Ecossistema , Oceanos e Mares , Animais , Tamanho Corporal , Modelos Biológicos
15.
Data Brief ; 21: 1119-1124, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456223

RESUMO

The data presented in this article are related to the research article entitled "A new framework to estimate spatio-temporal ammonia emissions due to Nitrogen fertilization in France" (Ramanantenasoa et al., 2018) but are given with more details at a regional scale (NUTS2) in the objective to get them available for other research or applied studies. They concerns (i) the data implemented in the CADASTRE_NH3 framework and (ii) the data obtained using it, for crop year 2005/06. For the source data, the article focusses on the N fertilization practice management description, as this dataset is the most difficult to collect and to analyze in the objective of realistically representing the spatial and temporal variabilities needed in the framework.

16.
Nat Chem Biol ; 14(12): 1127-1132, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374166

RESUMO

Cells must cope with toxic or reactive intermediates formed during metabolism. One coping strategy is to sequester reactions that produce such intermediates within specialized compartments or tunnels connecting different active sites. Here, we show that propionyl-CoA synthase (PCS), an ∼ 400-kDa homodimer, three-domain fusion protein and the key enzyme of the 3-hydroxypropionate bi-cycle for CO2 fixation, sequesters its reactive intermediate acrylyl-CoA. Structural analysis showed that PCS forms a multicatalytic reaction chamber. Kinetic analysis suggested that access to the reaction chamber and catalysis are synchronized by interdomain communication. The reaction chamber of PCS features three active sites and has a volume of only 33 nm3. As one of the smallest multireaction chambers described in biology, PCS may inspire the engineering of a new class of dynamically regulated nanoreactors.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Catálise , Coenzima A Ligases/genética , Cristalografia por Raios X , Cinética , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Difração de Raios X
17.
Chemphyschem ; 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198105

RESUMO

A family of europium (III) complexes based on a polydentate ligand functionalized by charge-transfer antennae presents remarkable one- and two-photon photophysical proper-ties in water or buffer. A detailed analysis of their emission properties suggests that the wrapping of the ligand around the central rare-earth ion results in an overall Cs symmetry in agreement with the theoretical simulation and that about 65-70 % of the emission intensity is concentrated in the hypersensitive 5 D0 →7 F2 transition at 615 nm. Their brightness is excellent, in the range of the best lanthanide bioprobes making them very attractive for bio-imaging experiments.

20.
Chemistry ; 24(39): 9739-9746, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29806881

RESUMO

Crystallophores are lanthanide complexes that act as powerful auxiliary for protein crystallography due to their strong nucleating and phasing effects. To get first insights on the mechanisms behind nucleation induced by Crystallophore, we systematically identified various elaborated networks of supramolecular interactions between Tb-Xo4 and subset of 6 protein structures determined by X-ray diffraction in complex with terbium-Crystallophore (Tb-Xo4). Such interaction mapping analyses demonstrate the versatile binding behavior of the Crystallophore and pave the way to a better understanding of its unique properties.


Assuntos
Elementos da Série dos Lantanídeos/química , Proteínas/química , Térbio/química , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA