RESUMO
Cyclodextrins (CDs) have been previously shown to display modest equilibrium binding affinities (Ka ~ 100-200 M-1) for the synthetic opioid analgesic fentanyl. In this work, we describe the synthesis of new CDs possessing extended thioalkylcarboxyl or thioalkylhydroxyl moieties and assess their binding affinity towards fentanyl hydrochloride. The optimal CD studied displays a remarkable affinity for the opioid of Ka = 66,500 M-1, the largest value reported for such an inclusion complex to date. One dimensional 1H Nuclear Magnetic Resonance (NMR) as well as Rotational Frame Overhauser Spectroscopy (2D-ROESY) experiments supported by molecular dynamics (MD) simulations suggest an unexpected binding behavior, with fentanyl able to bind the CD interior in one of two distinct orientations. Binding energies derived from the MD simulations work correlate strongly with NMR-derived affinities highlighting its utility as a predictive tool for CD candidate optimization. The performance of these host molecules portends their utility as platforms for medical countermeasures for opioid exposure, as biosensors, and in other forensic science applications.
Assuntos
Ciclodextrinas , Ciclodextrinas/química , Fentanila/química , Analgésicos Opioides , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica MolecularRESUMO
The only medication available currently to prevent and treat opioid overdose (naloxone) was approved by the US Food and Drug Administration (FDA) nearly 50 years ago. Because of its pharmacokinetic and pharmacodynamic properties, naloxone has limited utility under some conditions and would not be effective to counteract mass casualties involving large-scale deployment of weaponized synthetic opioids. To address shortcomings of current medical countermeasures for opioid toxicity, a trans-agency scientific meeting was convened by the US National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH) on August 6 and 7, 2019, to explore emerging alternative approaches for treating opioid overdose in the event of weaponization of synthetic opioids. The meeting was initiated by the Chemical Countermeasures Research Program (CCRP), was organized by NIAID, and was a collaboration with the National Institute on Drug Abuse/NIH (NIDA/NIH), the FDA, the Defense Threat Reduction Agency (DTRA), and the Biomedical Advanced Research and Development Authority (BARDA). This paper provides an overview of several presentations at that meeting that discussed emerging new approaches for treating opioid overdose, including the following: (1) intranasal nalmefene, a competitive, reversible opioid receptor antagonist with a longer duration of action than naloxone; (2) methocinnamox, a novel opioid receptor antagonist; (3) covalent naloxone nanoparticles; (4) serotonin (5-HT)1A receptor agonists; (5) fentanyl-binding cyclodextrin scaffolds; (6) detoxifying biomimetic "nanosponge" decoy receptors; and (7) antibody-based strategies. These approaches could also be applied to treat opioid use disorder.
Assuntos
Analgésicos Opioides/efeitos adversos , Overdose de Drogas/terapia , Contramedidas Médicas , Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Epidemia de Opioides , Transtornos Relacionados ao Uso de Opioides/terapia , Animais , Congressos como Assunto , Overdose de Drogas/etiologia , Overdose de Drogas/mortalidade , Humanos , Naloxona/efeitos adversos , Antagonistas de Entorpecentes/efeitos adversos , Epidemia de Opioides/mortalidade , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/mortalidade , Prognóstico , Medição de Risco , Fatores de RiscoRESUMO
Chemical attribution signatures indicative of O-isobutyl S-(2-diethylaminoethyl) methylphosphonothioate (Russian VX) synthetic routes were investigated in spiked food samples. Attribution signatures were identified using a multifaceted approach: Russian VX was synthesized using six synthetic routes and the chemical attribution signatures identified by GC-MS and LC-MS. Three synthetic routes were then down selected and spiked into complex matrices: bottled water, baby food, milk, liquid eggs, and hot dogs. Sampling and extraction methodologies were developed for these materials and used to isolate the attribution signatures and Russian VX from each matrix. Recoveries greater than 60% were achieved for most signatures in all matrices; some signatures provided recoveries greater than 100%, indicating some degradation during sample preparation. A chemometric model was then developed and validated with the concatenated data from GC-MS and LC-MS analyses of the signatures; the classification results of the model were >â¯75% for all samples. This work is part three of a three-part series in this issue of the United States-Sweden collaborative efforts towards the understanding of the chemical attribution signatures of Russian VX in crude materials and in food matrices.
Assuntos
Substâncias para a Guerra Química/isolamento & purificação , Análise de Alimentos , Contaminação de Alimentos/análise , Compostos Organotiofosforados/isolamento & purificação , Extração em Fase Sólida , Animais , Substâncias para a Guerra Química/química , Cromatografia Líquida , Água Potável/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Alimentos Infantis/análise , Espectrometria de Massas , Leite/química , Compostos Organotiofosforados/químicaRESUMO
Chemical attribution of the origin of an illegal drug is a key component of forensic efforts aimed at combating illicit and clandestine manufacture of drugs and pharmaceuticals. The results of these studies yield detailed information on synthesis byproducts, reagents, and precursors that can be used to identify the method of manufacture. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3-methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Eighteen crude samples from six synthesis methods were generated, the analysis of which was used to identify signatures (i.e. chemical compounds) that were important in the discrimination of synthetic route. These methods were carefully selected to minimize the use of scheduled precursors, complicated laboratory equipment, number of steps, and extreme reaction conditions. Using gas and liquid chromatographies combined with time-of-flight mass spectrometry (GC-QTOF and LC-QTOF) over 160 distinct species were monitored. Analysis of this combined data set was performed using modern machine learning techniques capable of reducing the size of the data set, prioritizing key chemical attribution signatures, and identifying the method of production for blindly synthesized 3-methylfentanyl materials.
RESUMO
Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. The results of these studies can yield detailed information on method of manufacture, starting material source, and final product, all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. A total of 160 distinct compounds and inorganic species were identified using gas and liquid chromatographies combined with mass spectrometric methods (gas chromatography/mass spectrometry (GC/MS) and liquid chromatography-tandem mass spectrometry-time of-flight (LC-MS/MS-TOF)) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least-squares-discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. This work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.
Assuntos
Fentanila/análise , Cromatografia Gasosa , Cromatografia Líquida , Fentanila/síntese química , Espectrometria de Massas , Estrutura Molecular , Análise MultivariadaRESUMO
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that ß-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated by water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. This baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.
Assuntos
Ciclodextrinas/química , Fentanila/química , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , SoluçõesRESUMO
The alternate and optimized syntheses of the parent opioid fentanyl and its analogs are described. The routes presented exhibit high-yielding transformations leading to these powerful analgesics after optimization studies were carried out for each synthetic step. The general three-step strategy produced a panel of four fentanyls in excellent yields (73-78%) along with their more commonly encountered hydrochloride and citric acid salts. The following strategy offers the opportunity for the gram-scale, efficient production of this interesting class of opioid alkaloids.
Assuntos
Analgésicos Opioides/síntese química , Fentanila/análogos & derivados , Fentanila/síntese química , Alquilação , OxirreduçãoRESUMO
Organophosphorus compounds represent a large class of molecules that include pesticides, flame-retardants, biologically relevant molecules, and chemical weapons agents (CWAs). The detection and identification of organophosphorus molecules, particularly in the cases of pesticides and CWAs, are paramount to the verification of international treaties by various organizations. To that end, novel analytical methodologies that can provide additional support to traditional analyses are important for unambiguous identification of these compounds. We have developed an NMR method that selectively edits for organophosphorus compounds via (31)P-(1)H heteronuclear single quantum correlation (HSQC) and provides an additional chromatographic-like separation based on self-diffusivities of the individual species via (1)H diffusion-ordered spectroscopy (DOSY): (1)H-(31)P HSQC-DOSY. The technique is first validated using the CWA VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) by traditional two-dimensional DOSY spectra. We then extend this technique to a complex mixture of VX degradation products and identify all the main phosphorus-containing byproducts generated after exposure to a zinc-cyclen organometallic homogeneous catalyst.
RESUMO
We report the synthesis of a three-dimensional (3D) macroassembly of graphene sheets with electrical conductivity (â¼10(2) S m(-1)) and Young's modulus (â¼50 MPa) orders of magnitude higher than those previously reported, super-compressive deformation behavior (â¼60% failure strain), and surface areas (>1300 m(2) g(-1)) approaching theoretically maximum values.
RESUMO
The binding stoichiometry, strength and structure of inclusion complexes formed between the neurotoxin tetramethylenedisulfotetramine (TETS) and both native and modified cyclodextrins (CyDs) were investigated using nuclear magnetic resonance (NMR) spectroscopy. Of all six examined cases, native ß-cyclodextrin (ß-CyD) and its chemically modified counterpart heptakis-(2,3,6-tris-(2-hydroxypropyl))-ß-cyclodextrin (2HP-ß-CyD) were found to associate most strongly with TETS as reflected in the magnitude of their binding constants (K = 537 ± 26 M(-1) for ß-CyD and K = 514 ± 49 M(-1) for 2HP-ß-CyD). Two-dimensional rotating-frame Overhauser effect spectroscopy NMR experiments confirm close proximity of the TETS molecule to both ß-CyD and 2HP-ß-CyD as intermolecular, through-space interactions between the H3 and H5 protons located in the interior of the CyD cavity and the methylene protons of TETS were identified.