Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 30(39): e1803628, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30101495

RESUMO

A novel photothermal process to spatially modulate the concentration of sub-wavelength, high-index nanocrystals in a multicomponent Ge-As-Pb-Se chalcogenide glass thin film resulting in an optically functional infrared grating is demonstrated. The process results in the formation of an optical nanocomposite possessing ultralow dispersion over unprecedented bandwidth. The spatially tailored index and dispersion modification enables creation of arbitrary refractive index gradients. Sub-bandgap laser exposure generates a Pb-rich amorphous phase transforming on heat treatment to high-index crystal phases. Spatially varying nanocrystal density is controlled by laser dose and is correlated to index change, yielding local index modification to ≈+0.1 in the mid-infrared.

2.
Langmuir ; 33(41): 10898-10906, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28915051

RESUMO

We report the effect of topographical features on gold nanowire assemblies in a vertically applied AC electric field. Nanowires 300 nm in diameter ×2.5 µm long, and coated with ∼30 nm silica shell, were assembled in aqueous solution between top and bottom electrodes, where the bottom electrode was patterned with cylindrical dielectric posts. Assemblies were monitored in real time using optical microscopy. Dielectrophoretic and electrohydrodynamic forces were manipulated through frequency and voltage variation, organizing nanowires parallel to the field lines, i.e., standing perpendicular to the substrate surface. Field gradients around the posts were simulated and assembly behavior was experimentally evaluated as a function of patterned feature diameter and spacing. The electric field gradient was highest around these topographic features, which resulted in accumulation of vertically oriented nanowires around the post perimeters when dielectrophoresis dominated (high AC frequency) or between the posts when electrohydrodynamics dominated (low AC frequency). This general type of reconfigurable assembly, coupled with judicious choice of nanowire and post materials/dimensions, could ultimately enable new types of optical materials capable of switching between two functional states by changing the applied field conditions.

3.
ACS Nano ; 11(6): 5844-5852, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28582622

RESUMO

One-dimensional Au nanoparticle arrays encapsulated within freestanding SiO2 nanowires are fabricated by thermal oxidation of Au-coated Si nanowires with controlled diameter and surface modulation. The nanoparticle diameter is determined by the Si nanowire diameter and Au film thickness, while the interparticle spacing is independently controlled by the Si nanowire modulation. The optical absorption of randomly oriented Au nanoparticle arrays exhibits a strong plasmonic response at 550 nm. Scanning transmission electron microscopy (STEM)-electron energy loss spectrum (EELS) of nanoparticle arrays confirmed the same plasmonic response and demonstrated uniform optical properties of the Au nanoparticles. The plasmonic response in the STEM-EELS maps is primarily confined around the vicinity of the nanoparticles. On the other hand, examination of the same nanowires by energy-filtered transmission electron microscopy also revealed significant enhancement in the plasmonic excitation in the regions in between the nanoparticles. This versatile route to synthesize one-dimensional Au nanoparticle arrays with independently tailorable nanoparticle diameter and interparticle spacing opens up opportunities to exploit enhanced design flexibility and cost-effectiveness for future plasmonic devices.

4.
Nanotechnology ; 28(26): 265501, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28525391

RESUMO

Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the µW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

5.
Nat Commun ; 7: 13236, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27807342

RESUMO

Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.

7.
ACS Nano ; 10(5): 5006-14, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27082162

RESUMO

Directed assembly of two-dimensional (2D) layered materials, such as transition metal dichalcogenides, holds great promise for large-scale electronic and optoelectronic applications. Here, we demonstrate controlled placement of solution-suspended monolayer tungsten disulfide (WS2) sheets on a substrate using electric-field-assisted assembly. Micrometer-sized triangular WS2 monolayers are selectively positioned on a lithographically defined interdigitated guiding electrode structure using the dielectrophoretic force induced on the sheets in a nonuniform field. Triangular sheets with sizes comparable to the interelectrode gap assemble with an observed preferential orientation where one side of the triangle spans across the electrode gap. This orientation of the sheets relative to the guiding electrode is confirmed to be the lowest energy configuration using semianalytical calculations. Nearly all sheets assemble without observable physical deformation, and postassembly photoluminescence and Raman spectroscopy characterization of the monolayers reveal that they retain their as-grown crystalline quality. These results show that the field-assisted assembly process may be used for large-area bottom-up integration of 2D monolayer materials for nanodevice applications.

9.
Sci Rep ; 6: 22009, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911709

RESUMO

In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements.

10.
Langmuir ; 31(21): 5779-86, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25978144

RESUMO

Ordered two-dimensional (2D) lattices were formed by assembling silica-coated solid and segmented Au nanowires between coplanar electrodes using alternating current (ac) electric fields. Dielectrophoretic forces from the ac field concentrated wires between the electrodes, with their long axis aligned parallel to the field lines. After reaching a sufficient particle density, field-induced dipolar interactions resulted in the assembly of dense 2D lattices that spanned the electrodes, a distance of at least ten wire lengths. The ends of neighboring Au wires or segments overlapped a fraction of their length to form lattice structures with a "running bond" brickwork-like pattern. The observed lattice structures were tunable in three distinct ways: (1) particle segmentation pattern, which fixed the lattice periodicity for a given field condition; (2) ac frequency, which varied lattice periodicity in real time; and (3) switching the field on/off, which converted between lattice and smectic particle organizations. Electric field simulations were performed to understand how the observed lattice periodicity depends on the assembly conditions and particle segmentation. Directed self-assembly of well-ordered 2D metallic nanowire lattices that can be designed by Au striping pattern and reconfigured by changes in field conditions could enable new types of switchable optical or electronic devices.

11.
Sci Rep ; 5: 9813, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25961804

RESUMO

The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits.

12.
Nanoscale ; 7(16): 7267-74, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25811140

RESUMO

Single wire p(+)-n(+) radial junction nanowire solar cell devices were fabricated by low pressure chemical vapor deposition of n(+) silicon shell layers on p(+) silicon nanowires synthesized by vapor-liquid-solid growth. The n(+)-shell layers were deposited at two growth temperatures (650 °C and 950 °C) to study the impact of shell crystallinity on the device properties. The n-type Si shell layers deposited at 650 °C were polycrystalline and resulted in diodes that were not rectifying. A pre-coating anneal at 950 °C in H2 improved the structural quality of the shell layers and yielded diodes with a dark saturation current density of 3 × 10(-5) A cm(-2). Deposition of the n-type Si shell layer at 950 °C resulted in epitaxial growth on the nanowire core, which lowered the dark saturation current density to 3 × 10(-7) A cm(-2) and increased the solar energy conversion efficiency. Temperature-dependent current-voltage measurements demonstrated that the 950 °C coated devices were abrupt junction p(+)-n(+) diodes with band-to-band tunneling at high reverse-bias voltage, while multi-step tunneling degraded the performance of devices fabricated with a 950 °C anneal and 650 °C coating. The higher trap density of the 950 °C annealed 650 °C coated devices is believed to arise from the polycrystalline nature of the shell layer coating, which results in an increased density of dangling bonds at the p(+)-n(+) junction interface.

13.
ACS Nano ; 9(2): 2080-7, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25625184

RESUMO

Tungsten diselenide (WSe2) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO)6) and dimethylselenium ((CH3)2Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 µm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe2/graphene heterostructures.

14.
Sci Rep ; 4: 7511, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524830

RESUMO

Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ± 40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities.

15.
Nano Lett ; 14(12): 6936-41, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25383798

RESUMO

Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).


Assuntos
Grafite/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Selênio/química , Compostos de Tungstênio/química , Condutividade Elétrica , Teste de Materiais
16.
ACS Nano ; 8(4): 3715-23, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24641706

RESUMO

The stacking of two-dimensional layered materials, such as semiconducting transition metal dichalcogenides (TMDs), insulating hexagonal boron nitride (hBN), and semimetallic graphene, has been theorized to produce tunable electronic and optoelectronic properties. Here we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene to form large-area van der Waals heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we show that the direct synthesis of TMDs on epitaxial graphene exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on epitaxial graphene can lead to a 10(3) improvement in photoresponse compared to MoS2 alone.

17.
ACS Nano ; 8(2): 1517-24, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24472069

RESUMO

Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity absorptivity with super-octave bandwidth over a specified optical wavelength range have not yet been demonstrated experimentally. Here, we show a broadband, polarization-insensitive metamaterial with greater than 98% measured average absorptivity that is maintained over a wide ± 45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 µm. The nearly ideal absorption is realized by using a genetic algorithm to identify the geometry of a single-layer metal nanostructure array that excites multiple overlapping electric resonances with high optical loss across greater than an octave bandwidth. The response is optimized by substituting palladium for gold to increase the infrared metallic loss and by introducing a dielectric superstrate to suppress reflection over the entire band. This demonstration advances the state-of-the-art in high-performance broadband metamaterial absorbers that can be reliably fabricated using a single patterned layer of metal nanostructures.

18.
Langmuir ; 29(36): 11535-45, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23952639

RESUMO

Combining biological molecules with integrated circuit technology is of considerable interest for next generation sensors and biomedical devices. Current lithographic microfabrication methods, however, were developed for compatibility with silicon technology rather than bioorganic molecules, and consequently it cannot be assumed that biomolecules will remain attached and intact during on-chip processing. Here, we evaluate the effects of three common photoresists (Microposit S1800 series, PMGI SF6, and Megaposit SPR 3012) and two photoresist removers (acetone and 1165 remover) on the ability of surface-immobilized DNA oligonucleotides to selectively recognize their reverse-complementary sequence. Two common DNA immobilization methods were compared: adsorption of 5'-thiolated sequences directly to gold nanowires and covalent attachment of 5'-thiolated sequences to surface amines on silica coated nanowires. We found that acetone had deleterious effects on selective hybridization as compared to 1165 remover, presumably due to incomplete resist removal. Use of the PMGI photoresist, which involves a high temperature bake step, was detrimental to the later performance of nanowire-bound DNA in hybridization assays, especially for DNA attached via thiol adsorption. The other three photoresists did not substantially degrade DNA binding capacity or selectivity for complementary DNA sequences. To determine whether the lithographic steps caused more subtle damage, we also tested oligonucleotides containing a single base mismatch. Finally, a two-step photolithographic process was developed and used in combination with dielectrophoretic nanowire assembly to produce an array of doubly contacted, electrically isolated individual nanowire components on a chip. Postfabrication fluorescence imaging indicated that nanowire-bound DNA was present and able to selectively bind complementary strands.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/química , Luz , Nanotecnologia/instrumentação , Oligodesoxirribonucleotídeos/química , Compostos Orgânicos/química , Acetona/química , Pareamento Incorreto de Bases , Sequência de Bases , DNA/genética , Nanoestruturas/química , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Dióxido de Silício/química
19.
ACS Nano ; 7(6): 4995-5007, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23730702

RESUMO

Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light. Here we report the optical absorptance of a metallic grating coupled to silicon oxide/oxynitride layers with a periodically varying refractive index, i.e., a 1D photonic crystal. These structures show a dramatic enhancement relative to those employing a homogeneous dielectric material. Multiple SPP waves can be activated, and both s- and p-polarized incident light can be efficiently trapped. Many SPP modes are weakly bound and display field enhancements that extend throughout the dielectric layers. These modes have significantly longer propagation lengths than the single SPP modes excited at the interface of a metallic grating and a uniform dielectric. These results suggest that metallic gratings coupled to photonic crystals could have utility for light trapping in photovoltaics, sensing, and other applications.

20.
Sci Rep ; 3: 1571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23535875

RESUMO

Metamaterials have the potential to create optical devices with new and diverse functionalities based on novel wave phenomena. Most practical optical systems require that the device properties be tightly controlled over a broad wavelength range. However, optical metamaterials are inherently dispersive, which limits operational bandwidths and leads to high absorption losses. Here, we show that deep-subwavelength inclusions can controllably tailor the dispersive properties of an established metamaterial structure thereby producing a broadband low-loss optical device with a desired response. We experimentally verify this by optimizing an array of nano-notch inclusions, which perturb the mode patterns and strength of the primary and secondary fishnet nanostructure resonances and give an optically thin mid-wave-infrared filter with a broad transmissive pass-band and near-constant group delay. This work outlines a powerful new strategy for realizing a wide range of broadband optical devices that exploit the unique properties of metamaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA