RESUMO
Interlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps. Time-dependent photoluminescense spectroscopy unveils considerably longer interlayer exciton lifetimes with respect to intralayer ones, thus confirming their nature. The linear Stark effect yields a bound electron-hole pair whose separation d is just (3.6 ± 0.1) Å with d being very close to dSe = 3.4 Å which is the calculated interfacial Se separation. The envelope of IX is twist-angle-dependent and describable by superimposed emissions that are nearly equally spaced in energy, as if quantized due to localization induced by the small moiré periodicity. These heterostacks are characterized by extremely flat interfacial valence bands making them prime candidates for the observation of magnetism or other correlated electronic phases upon carrier doping.
RESUMO
The recent discovery of the A n+1B n X3n+1 (A = lanthanide, B = transition metal, X = tetrel) homologous series provides a new platform to study the structure-property relationships of highly correlated electron systems. Several members of Ce n+1Co n Ge3n+1 (n = 1, 4, 5, 6, and ∞) show evidence of heavy electron behavior with complex magnetic interactions. While the Ce analogues have been investigated, only n = 1, 2, and ∞ of Pr n+1Co n Ge3n+1 have been synthesized, with n = 1 and 2 showing a nonsinglet magnetic ground state. The Pr analogues can provide a platform for direct comparison of highly correlated behavior. In this perspective, we discuss the impetus for synthesizing the Pr n+1Co n Ge3n+1 members and present the structural characterization of the n = 3 and n = 4 members. We lay the foundation for future investigations of the Pr n+1Co n Ge3n+1 family of compounds and highlight the importance of complementary methods to characterize new quantum materials.
RESUMO
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers that consist of covalently linked, two-dimensional sheets that can stack together through noncovalent interactions. Here we report the synthesis of a novel COF, called PyCOFamide, which has an experimentally observed pore size that is greater than 6 nm in diameter. This is among the largest pore size reported to date for a 2D-COF. PyCOFamide exhibits permanent porosity and high crystallinity as evidenced by the nitrogen adsorption, powder X-ray diffraction, and high-resolution transmission electron microscopy. We show that the pore size of PyCOFamide is large enough to accommodate fluorescent proteins such as Superfolder green fluorescent protein and mNeonGreen. This work demonstrates the utility of noncovalent structural reinforcement in 2D-COFs to produce larger and persistent pore sizes than previously possible.
Assuntos
Estruturas Metalorgânicas/química , Adsorção , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Estruturas Metalorgânicas/síntese química , PorosidadeRESUMO
The BaAl4 prototype structure and its derivatives have been identified to host several topological quantum materials and noncentrosymmetric superconductors. Single crystals up to â¼3 mm × 3 mm × 5 mm of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are obtained via flux growth utilizing Sn as metallic flux. The crystal structure is isostructural to the Lu2Co3Si5 structure type in the crystallographic space group C2/c. The temperature-dependent magnetization indicates magnetic ordering at 30 K for all three compounds. Pr2Co3Ge5 and Nd2Co3Ge5 exhibit complex magnetic behavior with spin reorientations before ordering antiferromagnetically around 6 K, whereas Sm2Co3Ge5 shows a clear antiferromagnetic behavior at 26 K. The structures and properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are compared to those of the ThCr2Si2 and BaNiSn3 structure types. Herein, we present the optimized crystal growth, structure, and physical properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm).
RESUMO
π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal â mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (â¼30 kcal â mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 â K-1 and (70.1, -44.7, 163, 177) × 10-6 â K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.
RESUMO
The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.
RESUMO
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquids, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner-sharing square-planar CuO4 units have been intensely studied due to their Mott insulating ground state, which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid-state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate, Cu3(TeO4)(SO4)·H2O, a promising alternative to layered perovskites. The orthorhombic phase (space group Pnma) is made of corrugated layers of corner-sharing CuO4 square-planar units that are edge-shared with TeO4 units. The layers are linked by slabs of corner-sharing CuO4 and SO4. Using both the bond valence sum analysis and magnetization data, we find purely Cu2+ ions within the layers but a mixed valence of Cu2+/Cu+ between the layers. Cu3(TeO4)(SO4)·H2O undergoes an antiferromagnetic transition at TN = 67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at T* = 12 K, evidenced by a kink in the heat capacity. The spin-canting transition is explained on the basis of a J1-J2 model of magnetic interactions, which is consistent with the slightly different in-plane superexchange paths. We present Cu3(TeO4)(SO4)·H2O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.
RESUMO
Solid-state thermoelastic behavior-a sudden exertion of an expansive or contractive physical force following a temperature change and phase transition in a solid-state compound-is rare in organic crystals, few are reversible systems, and most of these are limited to a dozen or so cycles before the crystal degrades or they reverse slowly over the course of many minutes or even hours. Comparable to thermosalience, wherein crystal phase changes induce energetic jumping, thermomorphism produces physical work via consistent and near-instantaneous predictable directional force. In this work, we show a fully reversible thermomorphic actuator that is stable at room temperature for multiple years and is capable of actuation for more than 200 cycles at near-ambient temperature. Specifically, the crystals shrink to 90% of their original length instantaneously upon heating beyond 45 °C and expand back to their original length upon cooling below 35 °C. Furthermore, the phase transition occurs instantaneously, with little obvious hysteresis, allowing us to create real-time actuating thermal fuses that cycle between on and off rapidly.
RESUMO
Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.
RESUMO
Whereas electron-phonon scattering relaxes the electron's momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2 with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.
RESUMO
Nickel catalysts represent a low cost and environmentally friendly alternative to palladium-based catalytic systems for Suzuki-Miyaura cross-coupling (SMC) reactions. However, nickel catalysts have suffered from poor air, moisture, and thermal stabilities, especially at high catalyst loading, requiring controlled reaction conditions. In this report, we examine a family of mono- and dinuclear Ni(II) and Pd(II) complexes with a diverse and versatile α-diimine ligand environment for SMC reactions. To evaluate the ligand steric effects, including the bite angle in the reaction outcomes, the structural variation of the complexes was achieved by incorporating iminopyridine- and acenaphthene-based ligands. Moreover, the impact of substrate bulkiness was investigated by reacting various aryl bromides with phenylboronic acid, 2-naphthylboronic acid, and 9-phenanthracenylboronic acid. Yields were the best with the dinuclear complex, being nearly quantitative (93-99%), followed by the mononuclear complexes, giving yields of 78-98%. Consequently, α-diimine-based ligands have the potential to deliver Ni-based systems as sustainable catalysts in SMC.
RESUMO
Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground states. Chromium trihalides provided the first such example with a change of interlayer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer previously unknown ground states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the nonmagnetic ligand atoms (Cl, Br, I). We synthesize a three-halide series, CrCl3 - x - y Br x I y , and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl3. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of interlayer coupling in the bulk of CrCl3 - x - y Br x I y crystals at the same field as in the exfoliation experiments.
RESUMO
We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a nonplanar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and -2, respectively, for their surface areas, pore sizes, and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.
RESUMO
A new ternary nonstoichiometric Zr6.5Pt6Se19 has been discovered as a part of effort to dope Zr into the layered transitional metal chalcogenide PtSe2. With a new structure type (oC68), it is the first Pt-based ternary chalcogenide with group 4 elements (Ti, Zr, and Hf). The crystal structure adopts the orthorhombic space group Cmmm with lattice parameters of a = 15.637(6) Å, b = 26.541(10) Å, c = 3.6581(12) Å, and V = 1518.2(9) Å3. This unusual structure consists of several building units: chains of edge-sharing selenium trigonal prisms and octahedra centered by zirconium atoms, chains of corner-shared square pyramid, and square planar centered by Pt atoms. The condensation of these building blocks forms a unique structure with bilayered Zr5.54Pt6Se19 slabs stacking along the b direction and large channels parallel to the c direction within the bilayered slabs. Band structure calculations suggest that partial occupancy of Zr atoms creates a pseudo gap at the Fermi level and is likely the main cause for the stability of this new phase.
RESUMO
There is growing interest in Holmium carriers for radiotherapeutic applications. In this work, a holmium-based metal-organic framework (MOF) using the 4,4'-biphenyldicarboxylic acid (H2BPDC) linker was synthesized and characterized to explore its potential as a radiotherapeutic carrier. The 3D MOF [Ho(BPDC)2]·(CH3)2NH2 was characterized by single crystal X-ray diffraction, FTIR, TGA and PXRD. A challenge to overcome in lanthanide-based MOFs is the deformation or collapse of the framework that can occur after evacuation of the pores. This structure displays high thermal stability and no collapse was observed when the molecules confined in the pores were removed. The coordination around the holmium center (CN = 8) is the key to this stability since only the organic linker and no solvent molecules coordinate to the metallic center. The porosity of the material was confirmed by high-pressure carbon dioxide (CO2) adsorption-desorption analysis. The stability of the MOF, its holmium content (28 wt%) and its porosity are features that make this material a potential holmium carrier for radiotherapeutic applications.
RESUMO
A nonstoichiometric ternary antimonide, Zr3.55Pt4Sb4, with a new structure type (hP24), has been synthesized via arc-melting. Its crystal structure was determined by single-crystal X-ray diffraction with hexagonal space group P63/mmc and lattice parameters a = 4.391(3) Å, c = 30.53(2) Å, and V = 509.7(8) Å3. It features the unique Pt4Sb4 slab with Pt-Pt bonds and is reminiscent to hexagonal diamond substructures. Three different Zr atoms, occupying three different sites, aid in the close-packing of the Pt and Sb atoms. Electronic structure calculations show the half occupancy of one Zr site creates a pseudogap at the Fermi level and optimizes the Pt-Sb bonding interactions. This enhances the electronic stability and accounts for the very narrow phase width observed for this nonstoichiometric compound. Furthermore, strong Zr-Pt and Zr-Sb interactions play a crucial role in the chemical bonding of the title compound. Electrical transport measurements show metallic behavior of this compound down to 2 K, consistent with the band structure calculations.
RESUMO
A new structure type of composition Ce6Co5Ge16 was grown out of a molten Sn flux. Ce6Co5Ge16 crystallizes in the orthorhombic space group Cmcm, with highly anisotropic lattice parameters of a = 4.3293(5) Å, b = 55.438(8) Å, and c = 4.3104(4) Å. The resulting single crystals were characterized by X-ray diffraction, and the magnetic and transport properties are presented. The Sn-stabilized structure of Ce6Co5Ge16 is based on the stacking of disordered Ce cuboctahedra and is an intergrowth of existing structure types including AlB2, BaNiSn3, and AuCu3. The stacking of structural subunits has previously been shown to be significant in the fields of superconductivity, quantum materials, and optical materials. Herein, we present the synthesis, characterization, and complex magnetic behavior of Ce6Co5Ge16 at low temperature, including three distinct magnetic transitions.
RESUMO
Single crystals of Ln2Fe4- xCo xSb5- yBi y (Ln = La, Ce; 0 ≤ x < 0.5; 0 ≤ y ≤ 0.2) were grown using Bi flux and self-flux methods. The compounds adopt the La2Fe4Sb5 structure type with tetragonal space group I4/ mmm. The La2Fe4Sb5 structure type is comprised of rare earth atoms capping square Sb nets in a square antiprismatic fashion and two transition-metal networks forming a PbO-type layer with Sb and transition-metal isosceles triangles. Substituting Co into the transition-metal sublattice results in a decrease in the transition temperature and reduced frustration, indicative of a transition from localized to itinerant behavior. In this manuscript, we demonstrated that Bi can be used as an alternate flux to grow single crystals of antimonides. Even with the incorporation of Bi into the Sb square net, the magnetic properties are not significantly affected. In addition, we have shown that the incorporation of Co into the Fe triangular sublattice leads to an itinerant magnetic system.
RESUMO
A novel copper(II) metal-organic framework (MOF) has been synthesized by modifying the reaction conditions of a 1D coordination polymer. The 1D polymer is built by the coordination between copper and 2,2'-(1 H-imidazole-4,5-diyl)di-1,4,5,6-tetrahydropyrimidine (H-L1). The geometry of H-L1 precludes its ability to form extended 3D framework structures. By adding 1,4-benzenedicarboxylic acid (H2BDC), a well-studied linker in MOF synthesis, we achieved the transition from a 1D polymer chain into porous 2D layered structures. Hydrogen bonding between L1 and BDC directs the parallel stacking of these layers, resulting in a 3D structure with one-dimensional channels accessible by two different pore windows. The preferred growth orientation of the crystal produces prolonged channels and a disparity in pore size distribution. This in turn results in slow diffusion processes in the material. Furthermore, an isoreticular MOF was prepared by substituting the BDC linker by 2,6-naphthalenedicarboxylic acid (H2NDC).
RESUMO
Due to its cooperative nature, magnetic ordering involves a complex interplay between spin, charge, and lattice degrees of freedom, which can lead to strong competition between magnetic states. Binary Fe3Ga4 is one such material that exhibits competing orders having a ferromagnetic (FM) ground state, an antiferromagnetic (AFM) behavior at intermediate temperatures, and a conspicuous re-entrance of the FM state at high temperature. Through a combination of neutron diffraction experiments and simulations, we have discovered that the AFM state is an incommensurate spin-density wave (ISDW) ordering generated by nesting in the spin polarized Fermi surface. These two magnetic states, FM and ISDW, are seldom observed in the same material without application of a polarizing magnetic field. To date, this unusual mechanism has never been observed and its elemental origins could have far reaching implications in many other magnetic systems that contain strong competition between these types of magnetic order. Furthermore, the competition between magnetic states results in a susceptibility to external perturbations allowing the magnetic transitions in Fe3Ga4 to be controlled via temperature, magnetic field, disorder, and pressure. Thus, Fe3Ga4 has potential for application in novel magnetic memory devices, such as the magnetic components of tunneling magnetoresistance spintronics devices.