Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Soft Robot ; 7(1): 59-67, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31460833


Multimaterial mechanisms are seen throughout natural organisms across all length scales. The different materials in their bodies, from rigid, structural materials to soft, elastic materials, enable mobility in complex environments. As robots leave the lab and begin to move in real environments, including a range of materials in 3D robotics mechanisms can help robots handle uncertainty and lessen control requirements. For the smallest robots, soft materials combined with rigid materials can facilitate large motions in compact spaces due to the increased compliance. However, integrating various material components in 3D at the microscale is a challenge. We present an approach for 3D microscale multimaterial fabrication using two-photon polymerization. Two materials with three orders of magnitude difference in Young's moduli are printed in consecutive cycles. Integrating a soft elastic material that is capable of more than 200% strain along with a rigid material has enabled the formation of hybrid elements, strongly adhered together, with layer accuracy below 3-µm resolution. We demonstrate a multilink multimaterial mechanism showing large deformation, and a 3D-printed 2-mm wingspan flapping wing mechanism, showing rapid prototyping of complex designs. This fabrication strategy can be extended to other materials, thus enhancing the functionality and complexity of small-scale robots.

Sci Rep ; 7(1): 17624, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247175


Local and controlled delivery of therapeutic agents directly into focally afflicted tissues is the ideal for the treatment of diseases that require direct interventions. However, current options are obtrusive, difficult to implement, and limited in their scope of utilization; the optimal solution requires a method that may be optimized for available therapies and is designed for exact delivery. To address these needs, we propose the Biocage, a customizable implantable local drug delivery platform. The device is a needle-sized porous container capable of encasing therapeutic molecules and matrices of interest to be eluted into the region of interest over time. The Biocage was fabricated using the Nanoscribe Photonic Professional GT 3D laser lithography system, a two-photon polymerization (2PP) 3D printer capable of micron-level precision on a millimeter scale. We demonstrate the build consistency and features of the fabricated device; its ability to release molecules; and a method for its accurate, stable delivery in mouse brain tissue. The Biocage provides a powerful tool for customizable and precise delivery of therapeutic agents into target tissues.

Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Sefarose/administração & dosagem , Animais , Camundongos , Camundongos Endogâmicos C57BL , Impressão Tridimensional