Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32096978

RESUMO

If thermoplasmonic applications such as heat-assisted magnetic recording are to be commercially viable, it is necessary to optimize both thermal stability and plasmonic performance of the devices involved. In this work, a variety of different adhesion layers were investigated for their ability to reduce dewetting of sputtered 50 nm Au films on SiO2 substrates. Traditional adhesion layer metals Ti and Cr were compared with alternative materials of Al, Ta, and W. Film dewetting was shown to increase when the adhesion material diffuses through the Au layer. An adhesion layer thickness of 0.5 nm resulted in superior thermomechanical stability for all adhesion metals, with an enhancement factor of up to 200× over 5 nm thick analogues. The metals were ranked by their effectiveness in inhibiting dewetting, starting with the most effective, in the order Ta > Ti > W > Cr > Al. Finally, the Au surface-plasmon polariton response was compared for each adhesion layer, and it was found that 0.5 nm adhesion layers produced the best response, with W being the optimal adhesion layer material for plasmonic performance.

2.
Acta Biomater ; 94: 145-159, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125729

RESUMO

Silver and silver nanoparticles (AgNPs) exhibit antimicrobial properties against some bacteria, fungi and viruses, however, the ever-increasing application of nanosilver in consumer products, water disinfection and healthcare settings, have raised concerns over the public health/environmental safety of this nanomaterial. The current ubiquity of nanosilver may result in repeated exposure through various routes (skin, inhalation, or ingestion) which may lead to health complications. While there are a number of review articles and case studies published to date on the subject, an updated coherent review that clearly delineates thresholds and safe doses is lacking. Thus, it is plausible to have an overview of the most recent findings on the threshold limits, safe doses of silver and its related nanoscale forms, and the needed actions to ensure the safety and health of human, terrestrial and aquatic lives. This review provides an account of the effects of nanosilver in our daily lives. STATEMENT OF SIGNIFICANCE: This manuscripts is a review of the toxicity of nanosized silver. With respect to the existing literature, it goes beyond stating that there is a knowledge gap, drawing the attention of a wider readership to the ever-growing evidence of nanosilver toxicity to human and nature, and outlining the dose thresholds based on comprehensive data mining and visualisation. There are nearly 500 consumer products that claim to contain nanosilver. Thus, we trust a review of recent conclusive findings is timely. This manuscript is in line with the scope of the Journal, enabling a better understanding of the biological response to a widely-used bionanomaterial. Moreover, it provides a bigger picture of the link between surface properties and biocompatibility of nanosilver in different forms.


Assuntos
Anti-Infecciosos/química , Nanopartículas Metálicas/química , Prata/química , Administração por Inalação , Animais , Anti-Infecciosos/toxicidade , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Resistência Microbiana a Medicamentos , Exposição Ambiental , Poluição Ambiental , Humanos , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Medição de Risco , Prata/toxicidade , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 11(7): 7607-7614, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30682242

RESUMO

The use of a metallic adhesion layer is known to increase the thermo-mechanical stability of Au thin films against solid-state dewetting, but in turn results in damping of the plasmonic response, reducing their utility in applications such as heat-assisted magnetic recording (HAMR). In this work, 50 nm Au films with Ti adhesion layers ranging in thickness from 0 to 5 nm were fabricated, and their thermal stability, electrical resistivity, and plasmonic response were measured. Subnanometer adhesion layers are demonstrated to significantly increase the stability of the thin films against dewetting at elevated temperatures (>200 °C), compared to more commonly used adhesion layer thicknesses that are in the range of 2-5 nm. For adhesion layers thicker than 1 nm, the diffusion of excess Ti through Au grain boundaries and subsequent oxidation was determined to result in degradation of the film. This mechanism was confirmed using transmission electron microscopy and X-ray photoelectron spectroscopy on annealed 0.5 and 5 nm adhesion layer samples. The superiority of subnanometer adhesion layers was further demonstrated through measurements of the surface-plasmon polariton resonance; those with thinner adhesion layers possessed both a stronger and spectrally sharper resonance. These results have relevance beyond HAMR to all Ti/Au systems operating at elevated temperatures.

4.
Sci Adv ; 4(3): eaao5031, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511736

RESUMO

Precise tunability of electronic properties of two-dimensional (2D) nanomaterials is a key goal of current research in this field of materials science. Chemical modification of layered transition metal dichalcogenides leads to the creation of heterostructures of low-dimensional variants of these materials. In particular, the effect of oxygen-containing plasma treatment on molybdenum disulfide (MoS2) has long been thought to be detrimental to the electrical performance of the material. We show that the mobility and conductivity of MoS2 can be precisely controlled and improved by systematic exposure to oxygen/argon plasma and characterize the material using advanced spectroscopy and microscopy. Through complementary theoretical modeling, which confirms conductivity enhancement, we infer the role of a transient 2D substoichiometric phase of molybdenum trioxide (2D-MoO x ) in modulating the electronic behavior of the material. Deduction of the beneficial role of MoO x will serve to open the field to new approaches with regard to the tunability of 2D semiconductors by their low-dimensional oxides in nano-modified heterostructures.

5.
Chemistry ; 24(2): 351-355, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29171697

RESUMO

Metallic-phase molybdenum disulfide (1T-MoS2 ) nanosheets have proven to be highly active in the hydrogen evolution reaction (HER). We describe construction of photosensitizer functionalized 1T-MoS2 by covalently tethering the molecular photosensitizer [RuII (bpy)3 ]2+ (bpy=2,2'-bipyridine) on 1T-MoS2 nanosheets. This was achieved by covalently tethering the bpy ligand to 1T-MoS2 nanosheets, and subsequent complexation with [RuII (bpy)2 Cl2 ] to yield [RuII (bpy)3 ]-MoS2 . The obtained [RuII (bpy)3 ]-MoS2 nanosheets were characterized using infra-red, electronic absorption, X-ray photoelectron, and Raman spectroscopies, X-ray powder diffraction and electron microscopy. The fabricated material exhibited a significant improvement of photocurrent and HER performance, demonstrating the potential of such two-dimensional [RuII (bpy)3 ]-MoS2 constructs in photosensitized HER.

6.
J Synchrotron Radiat ; 21(Pt 3): 638-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24763656

RESUMO

Transnational access (TNA) to national radiation sources is presently provided via programmes of the European Commission by BIOSTRUCT-X and CALIPSO with a major benefit for scientists from European countries. Entirely based on scientific merit, TNA allows all European scientists to realise synchrotron radiation experiments for addressing the Societal Challenges promoted in HORIZON2020. In addition, by TNA all European users directly take part in the development of the research infrastructure of facilities. The mutual interconnection of users and facilities is a strong prerequisite for future development of the research infrastructure of photon science. Taking into account the present programme structure of HORIZON2020, the European Synchrotron User Organization (ESUO) sees considerable dangers for the continuation of this successful collaboration in the future.

7.
Phys Chem Chem Phys ; 15(42): 18688-93, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24085267

RESUMO

Nitrogen-doped Pyrolytic Carbon (N-PyC) films were employed as an electrode material in electrochemical applications. PyC was grown by via non-catalysed chemical vapour deposition and subsequently functionalised via exposure to ammonia-hydrogen plasma. The electrochemical properties of the N-PyC films were investigated using the ferri/ferro-cyanide and hexaamine ruthenium(III) chloride redox probes. Exceptional electron transfer properties were observed and quantified for the N-PyC compared to the as-grown films. X-ray photoelectron spectroscopy confirmed the presence of nitrogen in edge plane graphitic configurations and the surface of the N-PyC was investigated using scanning electron microscopy and atomic force microscopy. The excellent electrochemical performance of the N-PyC, in addition to its ease of preparation, renders this material ideal for applications in electrochemical sensing.


Assuntos
Carbono/química , Eletroquímica/instrumentação , Nitrogênio/química , Amônia/química , Eletrodos , Hidrogênio/química , Fenômenos Físicos , Propriedades de Superfície
8.
J Phys Chem B ; 109(15): 7124-33, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16851812

RESUMO

Due to their ease of fabrication and monodisperse, metallic nature, molybdenum-sulfur-iodine nanowires are an interesting alternative to carbon nanotubes for some applications. However very little is known about the solubility of these materials. In this work we have investigated the solubility of Mo(6)S(4.5)I(4.5) nanowire soot in a range of common solvents by performing sedimentation studies and microscopic and spectroscopic characterization. A sedimentation equation was derived showing that the concentration of any insoluble dispersed phase decreases exponentially with time. We find that in all solvents, Mo(6)S(4.5)I(4.5) nanowire soot contains three phases, two of which are insoluble with one stable phase. Microscopy and spectroscopy show that the first insoluble phase is associated mainly with spherical impurities and sediments rapidly out of solution resulting in purification. The second phase appears to consist of insoluble nanowire bundles and sediments more slowly, eventually leaving a stable dispersion of nanowire bundles. The stably dispersed bundles tend to be smaller than their insoluble counterparts. The best solvents studied were 2-propanol and dimethylformamide. Microscopy studies showed that, in the case of 2-propanol, sonication significantly reduced the bundle size relative to the unsonicated bulk. However, during sedimentation, large quantities of bundles were observed to reaggregate to form larger bundles which subsequently sedimented out of solution. In general, the sedimentation properties of the various phases did not vary significantly with concentration indicating that the insoluble nanowires are intrinsically insoluble. However, the diameter of the stably dispersed bundles decreased with concentration, until very small bundles consisting of only two or three nanowires were observed at concentrations below 0.003 mg/mL. In addition, stable composite dispersions were produced by mixing the nanowires with poly(vinylpyrrolidone) in 2-propanol opening the way for the formation of polymer/inorganic nanowire composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA