Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Brain Imaging Behav ; 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34882275

RESUMO

Imaging studies of FTD typically present group-level statistics between large cohorts of genetically, molecularly or clinically stratified patients. Group-level statistics are indispensable to appraise unifying radiological traits and describe genotype-associated signatures in academic studies. However, in a clinical setting, the primary objective is the meaningful interpretation of imaging data from individual patients to assist diagnostic classification, inform prognosis, and enable the assessment of progressive changes compared to baseline scans. In an attempt to address the pragmatic demands of clinical imaging, a prospective computational neuroimaging study was undertaken in a cohort of patients across the spectrum of FTD phenotypes. Cortical changes were evaluated in a dual pipeline, using standard cortical thickness analyses and an individualised, z-score based approach to characterise subject-level disease burden. Phenotype-specific patterns of cortical atrophy were readily detected with both methodological approaches. Consistent with their clinical profiles, patients with bvFTD exhibited orbitofrontal, cingulate and dorsolateral prefrontal atrophy. Patients with ALS-FTD displayed precentral gyrus involvement, nfvPPA patients showed widespread cortical degeneration including insular and opercular regions and patients with svPPA exhibited relatively focal anterior temporal lobe atrophy. Cortical atrophy patterns were reliably detected in single individuals, and these maps were consistent with the clinical categorisation. Our preliminary data indicate that standard T1-weighted structural data from single patients may be utilised to generate maps of cortical atrophy. While the computational interpretation of single scans is challenging, it offers unrivalled insights compared to visual inspection. The quantitative evaluation of individual MRI data may aid diagnostic classification, clinical decision making, and assessing longitudinal changes.

2.
Brain ; 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34791079

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. ALS is both clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria) and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis. Recently, we have shown that resting-state EEG can reliably and quantitatively capture abnormal patterns of motor and cognitive network disruption in ALS. These network disruptions have been identified across multiple frequency bands, and using measures of neural activity (spectral power) and connectivity (co-modulation of activity by amplitude envelope correlation and synchrony by imaginary coherence) on source-localised brain oscillations from high-density EEG. Using data-driven methods (similarity network fusion and spectral clustering), we have now undertaken a clustering analysis to identify disease subphenotypes and to determine whether different patterns of disruption are predictive of disease outcome. We show that ALS patients (N = 95) can be subgrouped into four phenotypes with distinct neurophysiological profiles. These clusters are characterised by varying degrees of disruption in the somatomotor (α-band synchrony), frontotemporal (ß-band neural activity and γl-band synchrony) and frontoparietal (γl-band co-modulation) networks, which reliably correlate with distinct clinical profiles and different disease trajectories. Using an in-depth stability analysis, we show that these clusters are statistically reproducible and robust, remain stable after re-assessment using a follow-up EEG session, and continue to predict the clinical trajectory and disease outcome. Our data demonstrate that novel phenotyping using neuroelectric signal analysis can distinguish disease subtypes based exclusively on different patterns of network disturbances. These patterns may reflect underlying disease neurobiology. The identification of ALS subtypes based on profiles of differential impairment in neuronal networks has clear potential in future stratification for clinical trials. Advanced network profiling in ALS can also underpin new therapeutic strategies that are based on principles of neurobiology and designed to modulate network disruption.

3.
J Neurol Neurosurg Psychiatry ; 92(11): 1197-1205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34168085

RESUMO

OBJECTIVE: Cerebellar disease burden and cerebro-cerebellar connectivity alterations are poorly characterised in amyotrophic lateral sclerosis (ALS) despite the likely contribution of cerebellar pathology to the clinical heterogeneity of the condition. METHODS: A prospective imaging study has been undertaken with 271 participants to systematically evaluate cerebellar grey and white matter alterations, cerebellar peduncle integrity and cerebro-cerebellar connectivity in ALS. Participants were stratified into four groups: (1) patients testing positive for GGGGCC repeat expansions in C9orf72, (2) patients carrying an intermediate-length repeat expansion in ATXN2, (3) patients without established ALS-associated mutations and (4) healthy controls. Additionally, the cerebellar profile of a single patient with ALS who had an ATXN2 allele length of 62 was evaluated. Cortical thickness, grey matter and white matter volumes were calculated in each cerebellar lobule complemented by morphometric analyses to characterise genotype-associated atrophy patterns. A Bayesian segmentation algorithm was used for superior cerebellar peduncle volumetry. White matter diffusivity parameters were appraised both within the cerebellum and in the cerebellar peduncles. Cerebro-cerebellar connectivity was assessed using deterministic tractography. RESULTS: Cerebellar pathology was confined to lobules I-V of the anterior lobe in patients with sporadic ALS in contrast to the considerable posterior lobe and vermis disease burden identified in C9orf72 mutation carriers. Patients with intermediate ATXN2 expansions did not exhibit significant cerebellar pathology. CONCLUSIONS: Focal rather than global cerebellar degeneration characterises ALS. Pathognomonic ALS symptoms which are typically attributed to other anatomical regions, such as dysarthria, dysphagia, pseudobulbar affect, eye movement abnormalities and cognitive deficits, may be modulated, exacerbated or partially driven by cerebellar changes in ALS.

4.
J Neurol ; 268(12): 4687-4697, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33983551

RESUMO

The contribution of cerebellar pathology to cognitive and behavioural manifestations is increasingly recognised, but the cerebellar profiles of FTD phenotypes are relatively poorly characterised. A prospective, single-centre imaging study has been undertaken with a high-resolution structural and diffusion tensor protocol to systematically evaluate cerebellar grey and white matter alterations in behavioural-variant FTD(bvFTD), non-fluent variant primary progressive aphasia(nfvPPA), semantic-variant primary progressive aphasia(svPPA), C9orf72-positive ALS-FTD(C9 + ALSFTD) and C9orf72-negative ALS-FTD(C9-ALSFTD). Cerebellar cortical thickness and complementary morphometric analyses were carried out to appraise atrophy patterns controlling for demographic variables. White matter integrity was assessed in a study-specific white matter skeleton, evaluating three diffusivity metrics: fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Significant cortical thickness reductions were identified in: lobule VII and crus I in bvFTD; lobule VI VII, crus I and II in nfvPPA; and lobule VII, crus I and II in svPPA; lobule IV, VI, VII and Crus I and II in C9 + ALSFTD. Morphometry revealed volume reductions in lobule V in all groups; in addition to lobule VIII in C9 + ALSFTD; lobule VI, VIII and vermis in C9-ALSFTD; lobule V, VII and vermis in bvFTD; and lobule V, VI, VIII and vermis in nfvPPA. Widespread white matter alterations were demonstrated by significant fractional anisotropy, axial diffusivity and radial diffusivity changes in each FTD phenotype that were more focal in those with C9 + ALSFTD and svPPA. Our findings indicate that FTD subtypes are associated with phenotype-specific cerebellar signatures with the selective involvement of specific lobules instead of global cerebellar atrophy.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Substância Branca , Demência Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Fenótipo , Estudos Prospectivos , Substância Branca/diagnóstico por imagem
5.
Brain Imaging Behav ; 15(5): 2283-2296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33409820

RESUMO

Primary lateral sclerosis (PLS) is classically considered a 'pure' upper motor neuron disorder. Motor cortex atrophy and pyramidal tract degeneration are thought to be pathognomonic of PLS, but extra-motor cerebral changes are poorly characterized. In a prospective neuroimaging study, forty PLS patients were systematically evaluated with a standardised imaging, genetic and clinical protocol. Patients were screened for ALS and HSP associated mutations, as well as C9orf72 hexanucleotide repeats. Clinical assessment included composite reflex scores, spasticity scales, functional rating scales, and screening for cognitive and behavioural deficits. The neuroimaging protocol evaluated cortical atrophy patterns, subcortical grey matter changes and white matter alterations in whole-brain and region-of-interest analyses. PLS patients tested negative for known ALS- and HSP-associated mutations and C9orf72 repeat expansions. Voxel-wise analyses revealed anterior cingulate, dorsolateral prefrontal, insular, opercular, orbitofrontal and bilateral mesial temporal grey matter changes and white matter alterations in the fornix, brainstem, temporal lobes, and cerebellum. Significant thalamus, caudate, hippocampus, putamen and accumbens nucleus volume reductions were also identified. Extra-motor clinical manifestations were dominated by verbal fluency deficits, language deficits, apathy and pseudobulbar affect. Our clinical and radiological evaluation confirms considerable extra-motor changes in a population-based cohort of PLS patients. Our data suggest that PLS should no longer be considered a neurodegenerative disorder selectively affecting the pyramidal system. PLS is associated with widespread extra-motor changes and manifestations which should be carefully considered in the multidisciplinary management of this low-incidence condition.


Assuntos
Esclerose Amiotrófica Lateral , Doença dos Neurônios Motores , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/genética , Estudos Prospectivos
6.
Bioinformatics ; 37(6): 871-872, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32845284

RESUMO

MOTIVATION: Repeat expansions are an important class of genetic variation in neurological diseases. However, the identification of novel repeat expansions using conventional sequencing methods is a challenge due to their typical lengths relative to short sequence reads and difficulty in producing accurate and unique alignments for repetitive sequence. However, this latter property can be harnessed in paired-end sequencing data to infer the possible locations of repeat expansions and other structural variation. RESULTS: This article presents REscan, a command-line utility that infers repeat expansion loci from paired-end short read sequencing data by reporting the proportion of reads orientated towards a locus that do not have an adequately mapped mate. A high REscan statistic relative to a population of data suggests a repeat expansion locus for experimental follow-up. This approach is validated using genome sequence data for 259 cases of amyotrophic lateral sclerosis, of which 24 are positive for a large repeat expansion in C9orf72, showing that REscan statistics readily discriminate repeat expansion carriers from non-carriers. AVAILABILITYAND IMPLEMENTATION: C source code at https://github.com/rlmcl/rescan (GNU General Public Licence v3).


Assuntos
Esclerose Amiotrófica Lateral , Expansão das Repetições de DNA , Esclerose Amiotrófica Lateral/genética , Proteína C9orf72/genética , Genoma , Humanos , Sequências Repetitivas de Ácido Nucleico , Software
7.
Brain Commun ; 2(2): fcaa064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954321

RESUMO

Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.

8.
Data Brief ; 32: 106246, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32944601

RESUMO

A standardised imaging protocol was implemented to evaluate disease burden in specific thalamic and amygdalar nuclei in 133 carefully phenotyped and genotyped motor neuron disease patients. "Switchboard malfunction in motor neuron diseases: selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis" [1] "Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis" [2] Raw volumetric data, group comparisons, effect sizes and percentage change are presented. Both ALS and PLS patients exhibited focal thalamus atrophy in ventral lateral and ventral anterior regions revealing extrapyramidal motor degeneration. Reduced accessory basal nucleus and cortical nucleus volumes were noted in the amygdala of C9orf72 negative ALS patients compared to healthy controls. ALS patients carrying the GGGGCC hexanucleotide repeats in C9orf72 exhibited preferential pathology in the mediodorsal-paratenial-reuniens thalamic nuclei and in the lateral nucleus and cortico-amygdaloid transition area of the amygdala. Considerable thalamic atrophy was observed in the sensory nuclei and lateral geniculate region of PLS patients. Our data demonstrate genotype-specific patterns of thalamus and amygdala involvement in ALS and a distinct disease-burden pattern in PLS. The dataset may be utilised for validation purposes, meta-analyses and the interpretation of thalamic and amygdalar profiles from other ALS genotypes.

9.
Nat Commun ; 11(1): 4556, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917883

RESUMO

Previous genetic studies have identified local population structure within the Netherlands; however their resolution is limited by use of unlinked markers and absence of external reference data. Here we apply advanced haplotype sharing methods (ChromoPainter/fineSTRUCTURE) to study fine-grained population genetic structure and demographic change across the Netherlands using genome-wide single nucleotide polymorphism data (1,626 individuals) with associated geography (1,422 individuals). We identify 40 haplotypic clusters exhibiting strong north/south variation and fine-scale differentiation within provinces. Clustering is tied to country-wide ancestry gradients from neighbouring lands and to locally restricted gene flow across major Dutch rivers. North-south structure is temporally stable, with west-east differentiation more transient, potentially influenced by migrations during the middle ages. Despite superexponential population growth, regional demographic estimates reveal population crashes contemporaneous with the Black Death. Within Dutch and international data, GWAS incorporating fine-grained haplotypic covariates are less confounded than standard methods.


Assuntos
/genética , Genética Populacional , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Análise por Conglomerados , Emigração e Imigração , Fluxo Gênico , Variação Genética/genética , Genoma , Geografia , Haplótipos , Humanos , Pessoa de Meia-Idade , Modelos Genéticos , Países Baixos , Polimorfismo de Nucleotídeo Único , /genética
10.
J Neurol Sci ; 417: 117039, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32713609

RESUMO

Temporal lobe studies in motor neuron disease overwhelmingly focus on white matter alterations and cortical grey matter atrophy. Reports on amygdala involvement are conflicting and the amygdala is typically evaluated as single structure despite consisting of several functionally and cytologically distinct nuclei. A prospective, single-centre, neuroimaging study was undertaken to comprehensively characterise amygdala pathology in 100 genetically-stratified ALS patients, 33 patients with PLS and 117 healthy controls. The amygdala was segmented into groups of nuclei using a Bayesian parcellation algorithm based on a probabilistic atlas and shape deformations were additionally assessed by vertex analyses. The accessory basal nucleus (p = .021) and the cortical nucleus (p = .022) showed significant volume reductions in C9orf72 negative ALS patients compared to controls. The lateral nucleus (p = .043) and the cortico-amygdaloid transition (p = .024) were preferentially affected in C9orf72 hexanucleotide carriers. A trend of total volume reduction was identified in C9orf72 positive ALS patients (p = .055) which was also captured in inferior-medial shape deformations on vertex analyses. Our findings highlight that the amygdala is affected in ALS and our study demonstrates the selective involvement of specific nuclei as opposed to global atrophy. The genotype-specific patterns of amygdala involvement identified by this study are consistent with the growing literature of extra-motor clinical features. Mesial temporal lobe pathology in ALS is not limited to hippocampal pathology but, as a key hub of the limbic system, the amygdala is also affected in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Doença dos Neurônios Motores , Tonsila do Cerebelo/diagnóstico por imagem , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
11.
J Neurol Sci ; 417: 117052, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731060

RESUMO

INTRODUCTION: Primary lateral sclerosis is a rare neurodegenerative disorder of the upper motor neurons. Diagnostic criteria have changed considerably over the years, and the recent consensus criteria introduced 'probable PLS' for patients with a symptom duration of 2-4 years. The objective of this study is the systematic evaluation of clinical and neuroimaging characteristics in early PLS by studying a group of 'probable PLS patients' in comparison to a cohort of established PLS patients. METHODS: In a prospective neuroimaging study, thirty-nine patients were stratified by the new consensus criteria into 'probable' (symptom duration 2-4 years) or 'definite' PLS (symptom duration >4 years). Patients were evaluated with a standardised battery of clinical instruments (ALSFRS-r, Penn upper motor neuron score, the modified Ashworth spasticity scale), whole genome sequencing, and underwent structural and diffusion MRI. The imaging profile of the two PLS cohorts were contrasted to a dataset of 100 healthy controls. All 'probable PLS' patients subsequently fulfilled criteria for 'definite' PLS on longitudinal follow-up and none transitioned to develop ALS. RESULTS: PLS patients tested negative for known ALS- or HSP-associated mutations on whole genome sequencing. Despite their shorter symptom duration, 'probable PLS' patients already exhibited considerable functional disability, upper motor neuron disease burden and the majority of them required walking aids for safe ambulation. Their ALSFRS-r, UMN and modified Ashworth score means were 83%, 98% and 85% of the 'definite' group respectively. Motor cortex thickness was significantly reduced in both PLS groups in comparison to controls, but cortical changes were less widespread in 'probable' PLS on morphometric analyses. Corticospinal tract and corpus callosum metrics were relatively well preserved in the 'probable' group in contrast to the widespread white matter degeneration observed in the 'definite' group. CONCLUSIONS: Our clinical and radiological analyses support the recent introduction of the 'probable' PLS category, as this cohort already exhibits considerable disability and cerebral changes consistent with established PLS. Before the publication of the new consensus criteria, these patients would have not been diagnosed with PLS on the basis of their symptom duration despite their significant functional impairment and motor cortex atrophy. The introduction of this new category will facilitate earlier recruitment into clinical trials, and shorten the protracted diagnostic uncertainty the majority of PLS patients face.


Assuntos
Esclerose Amiotrófica Lateral , Doença dos Neurônios Motores , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Humanos , Doença dos Neurônios Motores/diagnóstico por imagem , Neurônios Motores , Neuroimagem , Estudos Prospectivos
12.
Front Neurol ; 11: 527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714263

RESUMO

Multiple studies implicate heterozygous GBA mutations as a major genetic risk factor for Parkinson's disease (PD); however, the frequency of mutations has never been examined in PD patients from the Irish population. We prospectively recruited 314 unrelated Irish PD patients (UK Brain Bank Criteria) and 96 Irish healthy controls (without any signs or family history of parkinsonism) attending. The Dublin Neurological Institute (DNI). Complete exon GBA Sanger sequencing analysis with flanking intronic regions was performed. The GBA carrier frequency was 8.3% in PD and 3.1% in controls. We identified a number of potentially pathogenic mutations including a p.G195E substitution and a p.G377C variant, previously described in a case study of Gaucher's disease in Ireland. On genotype-phenotype assessment hallucinations, dyskinesia, and dystonia were more prevalent in GBA-PD. The genetic etiology of PD in Ireland differs from the continental Europe as seen with the lower LRRK2 and higher than in most European countries GBA mutation frequency. Determining genetic risk factors in different ethnicities will be critical for future personalized therapeutic approach.

13.
Neuroimage Clin ; 27: 102300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32554322

RESUMO

The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the 'motor' thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Doença dos Neurônios Motores/patologia , Mutação/genética , Núcleos Talâmicos/patologia , Idoso , Esclerose Amiotrófica Lateral/fisiopatologia , Atrofia/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Núcleos Talâmicos/fisiopatologia
14.
Data Brief ; 29: 105229, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32083157

RESUMO

A standardised, single-centre, longitudinal imaging protocol was used to evaluate longitudinal brainstem alterations in 100 patients with amyotrophic lateral sclerosis (ALS) with reference to 33 patients with primary lateral sclerosis (PLS), 30 patients with frontotemporal dementia (FTD) and 100 healthy controls. "Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study" [1] ALS patients were scanned twice; 4 months apart. T1-weighted imaging data were acquired on a 3 T Philips Achieva MRI system, using a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) sequence. Raw MRI data underwent meticulous quality control before pre-processing. A Bayesian segmentation algorithm was utilised to parcellate the brainstem into the medulla oblongata, pons and mesencephalon before estimating the volume of each segment. Vertex-based shape analyses were carried out to characterise anatomical patterns of atrophy. Brainstem volume loss in ALS was dominated by medulla oblongata atrophy, but significant pontine pathology was also detected. Brainstem volume reductions were more significant in PLS than in ALS after correcting for demographic variables and total intracranial volume. Shape analyses revealed bilateral 'flattening' of the medullary pyramids in ALS compared to healthy controls. Our data demonstrate that computational neuroimaging readily detects brainstem pathology in vivo in both amyotrophic lateral sclerosis and primary lateral sclerosis.

15.
Data Brief ; 29: 105115, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055654

RESUMO

Primary lateral sclerosis and amyotrophic lateral sclerosis are primarily associated with motor cortex and corticospinal tract pathology. A standardised, prospective, single-centre neuroimaging protocol was used to characterise thalamic, hippocampal and basal ganglia involvement in 33 patients with primary lateral sclerosis (PLS), 100 patients with amyotrophic lateral sclerosis (ALS), and 117 healthy controls. "Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling" [1] Imaging data were acquired on a 3 T MRI system using a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo sequence. Model based segmentation was used to estimate the volumes of the thalamus, hippocampus, amygdala, caudate, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated into cytologically-defined subfields. Total intracranial volume (TIV) was estimated for each participant to aid the interpretation of subcortical volume alterations. Group comparisons were corrected for age, gender, TIV, education and symptom duration. Considerable thalamic, hippocampal and accumbens nucleus atrophy was detected in PLS compared to healthy controls and selective dentate, molecular layer, CA1, CA3, and CA4 hippocampal pathology was also identified. In ALS, additional volume reductions were noted in the amygdala, left caudate and the hippocampal-amygdala transition area of the hippocampus. Our imaging data provide evidence of extensive and phenotype-specific patterns of subcortical degeneration in PLS.

16.
NAR Genom Bioinform ; 2(4): lqaa105, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33554115

RESUMO

Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple regions in the genome. Although several studies have reported on this issue, few studies have empirically examined the impact of cross-reactivity in an epigenome-wide association study (EWAS). In this paper, we report on cross-reactivity issues that we discovered in a large EWAS on the presence of the C9orf72 repeat expansion in ALS patients. Specifically, we found that that the majority of the significant probes inadvertently cross-hybridized to the C9orf72 locus. Importantly, these probes were not flagged as cross-reactive in previous studies, leading to novel insights into the extent to which cross-reactivity can impact EWAS. Our findings are particularly relevant for epigenetic studies into diseases associated with repeat expansions and other types of structural variation. More generally however, considering that most spurious associations were not excluded based on pre-defined sets of cross-reactive probes, we believe that the presented data-driven flag and consider approach is relevant for any type of EWAS.

17.
Neuroimage Clin ; 24: 102089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31795059

RESUMO

BACKGROUND: Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS: A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS: Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS: PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Doença dos Neurônios Motores/diagnóstico por imagem , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Atrofia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Proteína C9orf72/genética , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/patologia , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/patologia , Substância Cinzenta/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/patologia , Putamen/diagnóstico por imagem , Putamen/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Sequenciamento Completo do Exoma
18.
Neuroimage Clin ; 24: 102054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31711033

RESUMO

BACKGROUND: Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. METHODS: A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. RESULTS: ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. CONCLUS: ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.


Assuntos
Esclerose Amiotrófica Lateral/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Doença dos Neurônios Motores/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Idoso , Esclerose Amiotrófica Lateral/patologia , Tronco Encefálico/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/patologia , Neuroimagem , Estudos Prospectivos , Substância Branca/patologia
19.
JAMA Neurol ; 76(11): 1367-1374, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329211

RESUMO

Importance: Heritability describes the proportion of variance in the risk of developing a condition that is explained by genetic factors. Although amyotrophic lateral sclerosis (ALS) is known to have a complex genetic origin, disease heritability remains unclear. Objectives: To determine the extent of ALS heritability and assess the association of sex with disease transmission. Design, Setting, and Participants: A prospective population-based parent-offspring heritability study was conducted from January 1, 2008, to December 31, 2017 to assess ALS heritability, and was the first study to assess heritability in the context of known gene mutations of large effect. A total of 1123 incident cases of ALS, diagnosed according to the El Escorial criteria and recorded on the Irish ALS register, were identified. Ninety-two individuals were excluded (non-Irish parental origin [n = 86] and familial ALS [n = 6]), and 1117 patients were included in the final analysis. Main Outcomes and Measures: Annual age-specific and sex-specific standardized ALS incidence and mortality-adjusted lifetime risk were determined. Sex-specific heritability estimates were calculated for the overall study cohort, for those known to carry the C9orf72 (OMIM 614260) variant, and for those with no known genetic risk. Results: A total of 32 parent-child ALS dyads were identified during the study period. Affected offspring were younger at the onset of disease (mean age, 52.0 years; 95% CI, 48.8-55.3 years) compared with their parents (mean age, 69.6 years; 95% CI, 62.4-76.9 years; P = .008). Lifetime risk of developing ALS in first-degree relatives of individuals with ALS was increased compared with the general population (1.4% [32 of 2234] vs 0.3% [2.6 of 1000]; P < .001). Mean lifetime heritability of ALS for the overall study cohort was 52.3% (95% CI, 42.9%-61.7%) and 36.9% (95% CI, 19.8%-53.9%) for those with no known genetic risk. Heritability estimates were highest in mother-daughter pairings (66.2%; 95% CI, 58.5%-73.9%). Conclusions and Relevance: This population-based study confirms that up to 50% of variance in ALS has a genetic basis, and that the presence of the C9orf72 variant is an important determinant of heritability. First-degree relatives of individuals with ALS without a known genetic basis remain at increased risk of developing ALS compared with the general population. A higher heritability estimate in mother-daughter pairings points to a sex-mediated effect that has been previously unrecognized.

20.
J Neurol ; 266(11): 2718-2733, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325016

RESUMO

BACKGROUND: Primary lateral sclerosis is a progressive upper-motor-neuron disorder associated with markedly longer survival than ALS. In contrast to ALS, the genetic susceptibility, histopathological profile and imaging signature of PLS are poorly characterised. Suspected PLS patients often face considerable diagnostic delay and prognostic uncertainty. OBJECTIVE: To characterise the distinguishing clinical, genetic and imaging features of PLS in contrast to ALS and healthy controls. METHODS: A prospective population-based study was conducted with 49 PLS patients, 100 ALS patients and 100 healthy controls using genetic profiling, standardised clinical assessments and neuroimaging. Whole-brain and region-of-interest analyses were undertaken to evaluate patterns of grey and white matter degeneration. RESULTS: In PLS, disease burden in the motor cortex is more medial than in ALS consistent with its lower limb symptom-predominance. PLS is associated with considerable cerebellar white and grey matter degeneration and the extra-motor profile of PLS includes marked insular, inferior frontal and left pars opercularis pathology. Contrary to ALS, PLS spares the postcentral gyrus. The body and splenium of the corpus callosum are preferentially affected in PLS, in contrast to the genu involvement observed in ALS. Clinical measures show anatomically meaningful correlations with imaging metrics in a somatotopic distribution. PLS patients tested negative for C9orf72 repeat expansions, known ALS and HSP-associated genes. CONCLUSIONS: Multiparametric imaging in PLS highlights disease-specific motor and extra-motor involvement distinct from ALS. In a condition where limited post-mortem data are available, imaging offers invaluable pathological insights. Anatomical correlations with clinical metrics confirm the biomarker potential of quantitative neuroimaging in PLS.


Assuntos
Encéfalo/patologia , Doença dos Neurônios Motores/patologia , Idoso , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Encéfalo/diagnóstico por imagem , Proteína C9orf72/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/genética , Neuroimagem , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...