Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Total Environ ; 773: 145146, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582324


Local differences in trophic structure and composition of organic matter subsidies can influence the capacity of soft sediment communities to assimilate recycled organic matter from processes such as salmon farm enrichment. The present study combines biochemical analysis with biomass density information on soft sediment taxa collected within the depositional footprint of salmon farms and at reference sites in the Marlborough Sounds, New Zealand. Distinct biochemical signatures confirmed that the flux of organic matter from salmon farms was an important subsidy for soft sediment communities. Isotopic modelling demonstrated that the proportion of biomass supported by farm-derived organic matter did not change in a consistent pattern along the 300 m gradient from each farm site, whereas the average trophic level of communities decreased with increasing proximity to farms. High variability in both the total biomass and the distribution of biomass across trophic levels occurred among sites downstream of farms and among individual farms. Consequently, estimates of basal organic matter assimilation per unit area by communities differed by several orders of magnitude among sites. Total organic matter assimilation tended to decrease with increasing proximity to farms due to a shift towards a more detrital based community. Differences in basal organic matter assimilation among farms did not appear to be directly related to local flow regime, but instead was closely linked to differences in the soft sediment community composition likely influenced by an array of anthropogenic and environmental factors. The results presented here highlight the importance of considering local variability in basal organic matter source pools, and the potential for synergistic and cumulative effects to drive changes in food web trophodynamics when assessing the impacts of aquaculture on soft sediment communities.

Sedimentos Geológicos , Salmão , Animais , Aquicultura , Nova Zelândia , Alimentos Marinhos
Glob Chang Biol ; 24(8): 3642-3653, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704449


Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near-shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007-2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13 C and δ15 N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10-20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass-balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near-shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2 ), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008-2009) and years with extensive sea ice breakout (2012-2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near-shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.

Mudança Climática , Cadeia Alimentar , Camada de Gelo , Animais , Regiões Antárticas , Biomassa , Monitoramento Ambiental , Gelo , Microbiologia da Água