Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Filtros adicionais











Intervalo de ano
1.
Sci Rep ; 9(1): 11623, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406173

RESUMO

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.

2.
Am J Psychiatry ; : appiajp201918101144, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31352813

RESUMO

OBJECTIVE: Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects. METHODS: The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T1-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen's d=0.1. RESULTS: The largest effect size (Cohen's d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset. CONCLUSIONS: Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases.

3.
Addiction ; 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31313399

RESUMO

BACKGROUND AND AIMS: The non-medical use of over-the-counter or prescribed analgesics (NMUA) is a significant public health problem. Little is known about the genetic and environmental etiology of NMUA and how these risks relate to other classes of substance use and misuse. Our aims were to estimate the heritability NMUA and sources of genetic and environmental covariance with cannabis and nicotine use, cannabis and alcohol use disorders and nicotine dependence in Australian twins. DESIGN: Biometrical genetic analyses or twin methods using structural equation univariate and multivariate modeling. SETTING: Australia. PARTICIPANTS: A total of 2007 young adult twins [66% female; µage  = 25.9, standard deviation (SD) = 3.6, range = 18-38] from the Brisbane Longitudinal Twin Study retrospectively assessed between 2009 and 2016. MEASUREMENTS: Self-reported NMUA (non-opioid or opioid-based), life-time nicotine, cannabis and opioid use, DSM-V cannabis and alcohol use disorders and the Fagerström Test for Nicotine Dependence. FINDINGS: Life-time NMUA was reported by 19.4% of the sample. Univariate heritability explained 46% [95% confidence interval (CI) = 0.29-0.57] of the risks in NMUA. Multivariate analyses revealed that NMUA is moderately associated genetically with cannabis (rg  = 0.41) and nicotine (rg  = 0.45) use and nicotine dependence (rg  = 0.34). In contrast, the genetic correlations with cannabis (rg  = 0.15) and alcohol (rg  = 0.07) use disorders are weak. CONCLUSIONS: In young male and female adults in Australia, the non-medical use of over-the-counter or prescribed analgesics appears to have moderate heritability. NMUA is moderately associated with cannabis and nicotine use and nicotine dependence. Its genetic etiology is largely distinct from that of cannabis and alcohol use disorders.

4.
Cereb Cortex ; 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31271414

RESUMO

Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44-80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE-) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.

5.
Nat Genet ; 51(8): 1207-1214, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31308545

RESUMO

Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9-4% of women and 0.3% of men2-4, with twin-based heritability estimates of 50-60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.

7.
Biol Psychiatry ; 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31178097

RESUMO

BACKGROUND: Lateralized dysfunction has been suggested in obsessive-compulsive disorder (OCD). However, it is currently unclear whether OCD is characterized by abnormal patterns of brain structural asymmetry. Here we carried out what is by far the largest study of brain structural asymmetry in OCD. METHODS: We studied a collection of 16 pediatric datasets (501 patients with OCD and 439 healthy control subjects), as well as 30 adult datasets (1777 patients and 1654 control subjects) from the OCD Working Group within the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium. Asymmetries of the volumes of subcortical structures, and of measures of regional cortical thickness and surface areas, were assessed based on T1-weighted magnetic resonance imaging scans, using harmonized image analysis and quality control protocols. We investigated possible alterations of brain asymmetry in patients with OCD. We also explored potential associations of asymmetry with specific aspects of the disorder and medication status. RESULTS: In the pediatric datasets, the largest case-control differences were observed for volume asymmetry of the thalamus (more leftward; Cohen's d = 0.19) and the pallidum (less leftward; d = -0.21). Additional analyses suggested putative links between these asymmetry patterns and medication status, OCD severity, or anxiety and depression comorbidities. No significant case-control differences were found in the adult datasets. CONCLUSIONS: The results suggest subtle changes of the average asymmetry of subcortical structures in pediatric OCD, which are not detectable in adults with the disorder. These findings may reflect altered neurodevelopmental processes in OCD.

8.
Twin Res Hum Genet ; 22(3): 154-163, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31198126

RESUMO

The aim of the 25 and Up (25Up) study was to assess a wide range of psychological and behavioral risk factors behind mental illness in a large cohort of Australian twins and their non-twin siblings. Participants had already been studied longitudinally from the age of 12 and most recently in the 19Up study (mean age = 26.1 years, SD = 4.1, range = 20-39). This subsequent wave follows up these twins several years later in life (mean age = 29.7 years, SD = 2.2, range =  22-44). The resulting data set enables additional detailed investigations of genetic pathways underlying psychiatric illnesses in the Brisbane Longitudinal Twin Study (BLTS). Data were collected between 2016 and 2018 from 2540 twins and their non-twin siblings (59% female, including 341 monozygotic complete twin-pairs, 415 dizygotic complete pairs and 1028 non-twin siblings and singletons). Participants were from South-East Queensland, Australia, and the sample was of predominantly European ancestry. The 25Up study collected information on 20 different mental disorders, including depression, anxiety, substance use, psychosis, bipolar and attention-deficit hyper-activity disorder, as well as general demographic information such as occupation, education level, number of children, self-perceived IQ and household environment. In this article, we describe the prevalence, comorbidities and age of onset for all 20 examined disorders. The 25Up study also assessed general and physical health, including physical activity, sleep patterns, eating behaviors, baldness, acne, migraines and allergies, as well as psychosocial items such as suicidality, perceived stress, loneliness, aggression, sleep-wake cycle, sexual identity and preferences, technology and internet use, traumatic life events, gambling and cyberbullying. In addition, 25Up assessed female health traits such as morning sickness, breastfeeding and endometriosis. Furthermore, given that the 25Up study is an extension of previous BLTS studies, 86% of participants have already been genotyped. This rich resource will enable the assessment of epidemiological risk factors, as well as the heritability and genetic correlations of mental conditions.

9.
J Health Psychol ; : 1359105319859048, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31244342

RESUMO

This study examined the extent to which psychosocial impact of nausea and vomiting during pregnancy predicts postpartum depression using a retrospective design. Data from a cross-sectional survey investigating women's experiences of nausea and vomiting during pregnancy were used (N = 861). Hierarchical logistic regression models revealed that the psychosocial impact of nausea and vomiting in pregnancy appears to be predictive of postpartum depression, independent of depression status before and during pregnancy. Our findings indicate that assessing the psychosocial impact of nausea and vomiting in pregnancy during antenatal care may identify women at risk of postpartum depression.

10.
Psychol Med ; 49(7): 1218-1226, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30929657

RESUMO

BACKGROUND: Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS: Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS: Positive genetic correlation was observed between MD and AD (rgMD-AD = + 0.47, P = 6.6 × 10-10). AC-quantity showed positive genetic correlation with both AD (rgAD-AC quantity = + 0.75, P = 1.8 × 10-14) and MD (rgMD-AC quantity = + 0.14, P = 2.9 × 10-7), while there was negative correlation of AC-frequency with MD (rgMD-AC frequency = -0.17, P = 1.5 × 10-10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10-6). There was no evidence for reverse causation. CONCLUSION: This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts.

11.
Drug Alcohol Depend ; 197: 271-279, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875648

RESUMO

BACKGROUND: Co-morbid substance use is very common. Despite a historical focus using genetic epidemiology to investigate comorbid substance use and misuse, few studies have examined substance-substance associations using polygenic risk score (PRS) methods. METHODS: Using summary statistics from the largest substance use GWAS to date (258,797- 632,802 subjects), GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), we constructed PRSs for smoking initiation (PRS-SI), age of initiation of regular smoking (PRS-AI), cigarettes per day (PRS-CPD), smoking cessation (PRS-SC), and drinks per week (PRS-DPW). We then estimated the fixed effect of individual PRSs on 22 lifetime substance use and substance use disorder phenotypes collected in an independent sample of 2463 young Australian adults using genetic restricted maximal likelihood (GREML) in Genome-wide Complex Trait Analysis (GCTA), separately in females, males and both sexes together. RESULTS: After accounting for multiple testing, PRS-SI significantly explained variation in the risk of cocaine (0.67%), amphetamine (1.54%), hallucinogens (0.72%), ecstasy (1.66%) and cannabis initiation (0.97%), as well as DSM-5 alcohol use disorder (0.72%). PRS-DPW explained 0.75%, 0.59% and 0.90% of the variation of cocaine, amphetamine and ecstasy initiation respectively. None of the 22 phenotypes including emergent classes of substance use were significantly predicted by PRS-AI, PRS-CPD, and PRS-SC. CONCLUSIONS: To our knowledge, this is the first study to report significant genetic overlap between the polygenic risks for smoking initiation and alcohol consumption and the risk of initiating major classes of illicit substances. PRSs constructed from large discovery GWASs allows the detection of novel genetic associations.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Herança Multifatorial , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Uso de Tabaco/epidemiologia , Adulto , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/epidemiologia , Alcoolismo/genética , Austrália/epidemiologia , Comorbidade , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Fatores de Risco , Fumar/epidemiologia , Fumar/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Uso de Tabaco/genética , Adulto Jovem
12.
Behav Genet ; 49(4): 386-398, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30877414

RESUMO

This study assessed the heritability of 25 hydroxyvitamin D3 (25(OH)D3) in a large twin cohort and the shared effect of sun exposure and skin colour on 25(OH)D3 variance. Study participants included 1604 twin pairs and their siblings (n = 4020). Twin correlations for 25(OH)D3 concentration were rMZ=0.79 (584 pairs) and rDZ = 0.52 (1020 pairs) consistent with an average h2 = 0.50 throughout the year. Significant phenotypic and genetic seasonal fluctuation was observed in 25(OH)D3 concentrations with heritability decreasing during the winter (h2 = 0.37) compared to summer (h2 = 0.62). Skin colour (measured both ordinally and quantitatively) and self-reported sun exposure were found to significantly affect 25(OH)D3 concentration. Twins with olive/dark skin had significantly lower 25(OH)D3 concentrations than those with fair/pale skin and multivariate genetic analysis showed that approximately half of the total additive genetic variation in 25(OH)D3 results from genes whose primary influence is on skin colour and sun exposure. Additionally, 37% of the total variance was attributed to shared environmental effects on vitamin D, skin colour and sun exposure measures. These results support a moderate estimate of vitamin D heritability and suggest significant influence of season, skin colour and sun exposure on the genetic variance.

13.
Nat Commun ; 10(1): 1052, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837455

RESUMO

Mouth ulcers are the most common ulcerative condition and encompass several clinical diagnoses, including recurrent aphthous stomatitis (RAS). Despite previous evidence for heritability, it is not clear which specific genetic loci are implicated in RAS. In this genome-wide association study (n = 461,106) heritability is estimated at 8.2% (95% CI: 6.4%, 9.9%). This study finds 97 variants which alter the odds of developing non-specific mouth ulcers and replicate these in an independent cohort (n = 355,744) (lead variant after meta-analysis: rs76830965, near IL12A, OR 0.72 (95% CI: 0.71, 0.73); P = 4.4e-483). Additional effect estimates from three independent cohorts with more specific phenotyping and specific study characteristics support many of these findings. In silico functional analyses provide evidence for a role of T cell regulation in the aetiology of mouth ulcers. These results provide novel insight into the pathogenesis of a common, important condition.


Assuntos
Loci Gênicos/imunologia , Predisposição Genética para Doença , Fatores Imunológicos/genética , Úlceras Orais/genética , Estomatite Aftosa/genética , Adulto , Idoso , Estudos de Coortes , Simulação por Computador , Feminino , Estudo de Associação Genômica Ampla , Humanos , Fatores Imunológicos/imunologia , Masculino , Pessoa de Meia-Idade , Úlceras Orais/imunologia , Estomatite Aftosa/imunologia , Linfócitos T/imunologia
14.
Am J Psychiatry ; 176(3): 228-238, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818988

RESUMO

OBJECTIVE:: Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex pathophysiology. Intracranial volume (ICV) and volumes of the nucleus accumbens, amygdala, caudate nucleus, hippocampus, and putamen are smaller in people with ADHD compared with healthy individuals. The authors investigated the overlap between common genetic variation associated with ADHD risk and these brain volume measures to identify underlying biological processes contributing to the disorder. METHODS:: The authors combined genome-wide association results from the largest available studies of ADHD (N=55,374) and brain volumes (N=11,221-24,704), using a set of complementary methods to investigate overlap at the level of global common variant genetic architecture and at the single variant level. RESULTS:: Analyses revealed a significant negative genetic correlation between ADHD and ICV (rg=-0.22). Meta-analysis of single variants revealed two significant loci of interest associated with both ADHD risk and ICV; four additional loci were identified for ADHD and volumes of the amygdala, caudate nucleus, and putamen. Exploratory gene-based and gene-set analyses in the ADHD-ICV meta-analytic data showed association with variation in neurite outgrowth-related genes. CONCLUSIONS:: This is the first genome-wide study to show significant genetic overlap between brain volume measures and ADHD, both on the global and the single variant level. Variants linked to smaller ICV were associated with increased ADHD risk. These findings can help us develop new hypotheses about biological mechanisms by which brain structure alterations may be involved in ADHD disease etiology.

15.
Transl Psychiatry ; 9(1): 120, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902966

RESUMO

There have been considerable recent advances in understanding the genetic architecture of Tourette syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variation that increases risk for TS-and its main symptom dimensions-influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS. We obtained summary statistics for the most recent TS genome-wide association study (GWAS) from the TS Psychiatric Genomics Consortium Working Group (4644 cases and 8695 controls) and GWAS of subcortical volumes from the ENIGMA consortium (30,717 individuals). We also undertook analyses using GWAS summary statistics of key symptom factors in TS, namely social disinhibition and symmetry behaviour. SNP effect concordance analysis (SECA) was used to examine genetic pleiotropy-the same SNP affecting two traits-and concordance-the agreement in single nucelotide polymorphism (SNP) effect directions across these two traits. In addition, a conditional false discovery rate (FDR) analysis was performed, conditioning the TS risk variants on each of the seven subcortical and the intracranial brain volume GWAS. Linkage disequilibrium score regression (LDSR) was used as validation of the SECA method. SECA revealed significant pleiotropy between TS and putamen (p = 2 × 10-4) and caudate (p = 4 × 10-4) volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume (p = 1 × 10-3). LDSR lent additional support for the association between TS and thalamus volume (p = 5.85 × 10-2). Furthermore, SECA revealed significant evidence of concordance between the social disinhibition symptom dimension and lower thalamus volume (p = 1 × 10-3), as well as concordance between symmetry behaviour and greater putamen volume (p = 7 × 10-4). Conditional FDR analysis further revealed novel variants significantly associated with TS (p < 8 × 10-7) when conditioning on intracranial (rs2708146, q = 0.046; and rs72853320, q = 0.035) and hippocampal (rs1922786, q = 0.001) volumes, respectively. These data indicate concordance for genetic variation involved in disorder risk and subcortical brain volumes in TS. Further work with larger samples is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.

17.
J Affect Disord ; 245: 885-896, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30699873

RESUMO

BACKGROUND: There have been considerable recent advances in understanding the genetic architecture of anxiety disorders and posttraumatic stress disorder (PTSD), as well as the underlying neurocircuitry of these disorders. However, there is little work on the concordance of genetic variations that increase risk for these conditions, and that influence subcortical brain structures. We undertook a genome-wide investigation of the overlap between the genetic influences from single nucleotide polymorphisms (SNPs) on volumes of subcortical brain structures and genetic risk for anxiety disorders and PTSD. METHOD: We obtained summary statistics of genome-wide association studies (GWAS) of anxiety disorders (Ncases = 7016, Ncontrols = 14,745), PTSD (European sample; Ncases = 2424, Ncontrols = 7113) and of subcortical brain structures (N = 13,171). SNP Effect Concordance Analysis (SECA) and Linkage Disequilibrium (LD) Score Regression were used to examine genetic pleiotropy, concordance, and genome-wide correlations respectively. SECAs conditional false discovery was used to identify specific risk variants associated with anxiety disorders or PTSD when conditioning on brain related traits. RESULTS: For anxiety disorders, we found evidence of significant concordance between increased anxiety risk variants and variants associated with smaller amygdala volume. Further, by conditioning on brain volume GWAS, we identified novel variants that associate with smaller brain volumes and increase risk for disorders: rs56242606 was found to increase risk for anxiety disorders, while two variants (rs6470292 and rs683250) increase risk for PTSD, when conditioning on the GWAS of putamen volume. LIMITATIONS: Despite using the largest available GWAS summary statistics, the analyses were limited by sample size. CONCLUSIONS: These preliminary data indicate that there is genome wide concordance between genetic risk factors for anxiety disorders and those for smaller amygdala volume, which is consistent with research that supports the involvement of the amygdala in anxiety disorders. It is notable that a genetic variant that contributes to both reduced putamen volume and PTSD plays a key role in the glutamatergic system. Further work with GWAS summary statistics from larger samples, and a more extensive look at the genetics underlying brain circuits, is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.


Assuntos
Transtornos de Ansiedade/genética , Transtornos de Ansiedade/psicologia , Variação Genética/genética , Vias Neurais/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Tonsila do Cerebelo/diagnóstico por imagem , Transtornos de Ansiedade/fisiopatologia , Encéfalo/diagnóstico por imagem , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
18.
Twin Res Hum Genet ; 22(1): 1-3, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661510

RESUMO

We recently reported an association of offspring educational attainment with polygenic risk scores (PRS) computed on parent's non-transmitted alleles for educational attainment using the second GWAS meta-analysis article on educational attainment published by the Social Science Genetic Association Consortium. Here we test the replication of these findings using a more powerful PRS from the third GWAS meta-analysis article by the Consortium. Each of the key findings of our previous paper is replicated using this improved PRS (N = 2335 adolescent twins and their genotyped parents). The association of children's attainment with their own PRS increased substantially with the standardized effect size, moving from ß = 0.134, 95% CI = 0.079, 0.188 for EA2, to ß = 0.223, 95% CI = 0.169, 0.278, p < .001, for EA3. Parent's PRS again predicted the socioeconomic status (SES) they provided to their offspring and increased from ß = 0.201, 95% CI = 0.147, 0.256 to ß = 0.286, 95% CI = 0.239, 0.333. Importantly, the PRS for alleles not transmitted to their offspring - therefore acting via the parenting environment - was increased in effect size from ß = 0.058, 95% CI = 0.003, 0.114 to ß = 0.067, 95% CI = 0.012, 0.122, p = .016. As previously found, this non-transmitted genetic effect was fully accounted for by parental SES. The findings reinforce the conclusion that genetic effects of parenting are substantial, explain approximately one-third the magnitude of an individual's own genetic inheritance and are mediated by parental socioeconomic competence.


Assuntos
Escolaridade , Estudo de Associação Genômica Ampla , Adolescente , Feminino , Humanos , Masculino , Fatores Socioeconômicos , Gêmeos
19.
Hum Brain Mapp ; 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30496643

RESUMO

Imaging genetic analyses quantify genetic control over quantitative measurements of brain structure and function using coefficients of relationship (CR) that code the degree of shared genetics between subjects. CR can be inferred through self-reported relatedness or calculated empirically using genome-wide SNP scans. We hypothesized that empirical CR provides a more accurate assessment of shared genetics than self-reported relatedness. We tested this in 1,046 participants of the Human Connectome Project (HCP) (480 M/566 F) recruited from the Missouri twin registry. We calculated the heritability for 17 quantitative traits drawn from four categories (brain diffusion and structure, cognition, and body physiology) documented by the HCP. We compared the heritability and genetic correlation estimates calculated using self-reported and empirical CR methods Kinship-based INference for GWAS (KING) and weighted allelic correlation (WAC). The polygenetic nature of traits was assessed by calculating the empirical CR from chromosomal SNP sets. The heritability estimates based on whole-genome empirical CR were higher but remained significantly correlated (r ∼0.9) with those obtained using self-reported values. Population stratification in the HCP sample has likely influenced the empirical CR calculations and biased heritability estimates. Heritability values calculated using empirical CR for chromosomal SNP sets were significantly correlated with the chromosomal length (r 0.7) suggesting a polygenic nature for these traits. The chromosomal heritability patterns were correlated among traits from the same knowledge domains; among traits with significant genetic correlations; and among traits sharing biological processes, without being genetically related. The pedigree structures generated in our analyses are available online as a web-based calculator (www.solar-eclipse-genetics.org/HCP).

20.
Behav Genet ; 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443694

RESUMO

In GWAS of imaging phenotypes (e.g., by the ENIGMA and CHARGE consortia), the growing number of phenotypes considered presents a statistical challenge that other fields are not experiencing (e.g. psychiatry and the Psychiatric Genetics Consortium). However, the multivariate nature of MRI measurements may also be an advantage as many of the MRI phenotypes are correlated and multivariate methods could be considered. Here, we compared the statistical power of a multivariate GWAS versus the current univariate approach, which consists of multiple univariate analyses. To do so, we used results from twin models to estimate pertinent vectors of SNP effect sizes on brain imaging phenotypes, as well as the residual correlation matrices, necessary to estimate analytically the statistical power. We showed that for subcortical structure volumes and hippocampal subfields, a multivariate GWAS yields similar statistical power to the current univariate approach. Our analytical approach is as accurate but ~ 1000 times faster than simulations and we have released the code to facilitate the investigation of other scenarios, may they be outside the field of imaging genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA